DOI QR코드

DOI QR Code

Effect of the Anode-to-Cathode Distance on the Electrochemical Reduction in a LiCl-Li2O Molten Salt

  • Received : 2013.07.17
  • Accepted : 2013.07.30
  • Published : 2013.08.31

Abstract

Electrochemical reductions of $UO_2$ at various anode-to-cathode distances (1.3, 2.3, 3.2, 3.7 and 5.8 cm) were carried out to investigate the effect of the anode-to-cathode distance on the electrochemical reduction rate. The geometry of the electrolysis cell in this study, apart from the anode-to-cathode distance, was identical for all of the electrolysis runs. Porous $UO_2$ pellets were electrolyzed by controlling a constant cell voltage in molten $Li_2O-LiCl$ at $650^{\circ}C$. A steel basket containing the porous $UO_2$ pellets and a platinum plate were used as the cathode and anode, respectively. The metallic products were characterized by means of a thermogravimetric analyzer, an X-ray diffractometer and a scanning electron microscope. The electrolysis runs conducted during this study revealed that a short anode-to-cathode distance is advantageous to achieve a high current density and accelerate the electrochemical reduction process.

Keywords

References

  1. G. Z. Chen, D. J. Fray, and T. W. Farthing, 'Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride', Nature, 407, 361 (2000). https://doi.org/10.1038/35030069
  2. K. Yasuda, T. Nohira, R. Hagiwara, and Y. H. Ogata, 'Direct electrolytic reduction of solid $SiO_{2}$ in molten $CaCl_{2}$ for the production of solar grade silicon', Electrochim. Acta, 53, 106 (2007). https://doi.org/10.1016/j.electacta.2007.01.024
  3. S. M. Jeong, J. Y. Jung., C. S. Seo, and S. W. Park, 'Characteristics of an electrochemical reduction of $Ta_{2}O_{5}$ for the preparation of metallic tantalum in a LiCl-$Li_{2}O$ molten salt', J. Alloy Compd., 440, 210 (2007). https://doi.org/10.1016/j.jallcom.2006.05.139
  4. S. I. Wang, G. M. Haarberg, and E. Kvalheim, 'Electrochemical behavior of dissolved $Fe_{2}O_{3}$ in molten $CaCl_{2}$-KF', J. Iron Steel Res., 16, 48 (2008).
  5. M. Gibilaro, J. Pivato, L. Cassayre, L. Massot, L. P. Chamelot, and P. Taxil, 'Direct electroreduction of oxides in molten fluoride salts', Electrochim. Acta, 56, 5410 (2011). https://doi.org/10.1016/j.electacta.2011.02.109
  6. D. Wang, G. Qiu, X. Jin, X. Hu, and G. Z. Chen, 'Electrochemical metallization of solid terbium oxide', Angew. Chem. Int. Ed., 45, 2384 (2006). https://doi.org/10.1002/anie.200503571
  7. X. Y. Yan and D. J. Fray, 'Production of niobium powder by direct electrochemical reduction of solid $Nb_{2}O_{5}$ in a eutectic $CaCl_{2}$-NaCl melt', Metall. Mater. Trans. B, 33, 685 (2002). https://doi.org/10.1007/s11663-002-0021-6
  8. Q. Xu, L.-Q. Deng, Y. Wu, and T. Ma, 'A study of cathode improvement for electro-deoxidation of $Nb_{2}O_{5}$ in a eutectic $CaCl_{2}$-NaCl melt at 1073K', J. Alloy Compd., 396, 288 (2005). https://doi.org/10.1016/j.jallcom.2005.01.002
  9. S. M. Jeong, H. Y. Yoo, J.-M. Hur, and C.-S. Seo, 'Preparation of metallic niobium from niobium pentoxide by an indirect electrochemical reduction in a LiCl-$Li_{2}O$ molten salt', J. Alloy Compd., 452, 27 (2008). https://doi.org/10.1016/j.jallcom.2007.02.057
  10. G. Z. Chen, E. Gordo, and D. J. Fray, 'Direct electrolytic preparation of chromium powder', Metall. Mater. Trans. B, 35, 223 (2004). https://doi.org/10.1007/s11663-004-0024-6
  11. E. Gordo, G. Z. Chen, and D. J. Fray, 'Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts', Electrochim. Acta, 49, 2195 (2004). https://doi.org/10.1016/j.electacta.2003.12.045
  12. B. Claux, J. Serp, and J. Fouletier, 'Electrochemical reduction of cerium oxide into metal', Electrochim. Acta, 56, 2771 (2011). https://doi.org/10.1016/j.electacta.2010.12.040
  13. S. D. Herrmann, S. X. Li, M. F. Simpson, and S. Phongikarroon, 'Electrolytic reduction of spent nuclear oxide fuel as part of an integral process to separate and recover actinides from fission products', Sep. Sci. Tech., 41, 1965 (2006). https://doi.org/10.1080/01496390600745602
  14. S. D. Herrmann and M. F. Simpson, 'Electrolytic reduction of spent light water reactor Fuel: Bench-scale experiment results', J. Nucl. Sci. Technol., 44, 36 (2007). https://doi.org/10.1080/18811248.2007.9711254
  15. J. L. Willit, W. E. Miller, and J. E. Battles, 'Electrorefining of uranium and plutonium - a literature review', J. Nucl. Mater., 195, 229 (1992). https://doi.org/10.1016/0022-3115(92)90515-M
  16. J. J. Laidler, J. E. Battles, W. E. Miller, J. P. Ackerman, and E. L. Carls, 'Development of pyroprocessing technology', Prog. Nucl. Energy, 31, 131 (1997). https://doi.org/10.1016/0149-1970(96)00007-8
  17. R. W. Benedict and H. F. McFarlane, 'EBR-II spent fuel treatment demonstration project status', Radwaste Magazine, 5, 23 (1998).
  18. J. Serp., R. J. M. Konings, R. Malmbeck, J. Rebizant, C. Scheppler, and J.-P. Glatz, 'Electrochemical behavior of plutonium ion in LiCl-KCl eutectic melts', J. Electroanal. Chem., 561, 143 (2004). https://doi.org/10.1016/j.jelechem.2003.07.027
  19. K. M. Goff, J. C. Wass, K. C. Marsden, and G. M. Teske, 'Electrochemical processing of used nuclear fuel', Nucl. Eng. Technol., 43, 335 (2011). https://doi.org/10.5516/NET.2011.43.4.335
  20. S. M. Jeong, S.-B. Park, S.-S. Hong, C.-S. Seo, and S.- W. Park, 'Electrolytic production of metallic uranium from $U_{3}O_{8}$ in a 20 kg-batch scale reactor', J. Radioanal. Nucl. Chem., 268, 349 (2006). https://doi.org/10.1007/s10967-006-0172-z
  21. M. Iizuka, Y. Sakamura, and T. Inoue, 'Development of pyroprocessing and its future direction', Nucl. Eng. Technol., 40, 183 (2008). https://doi.org/10.5516/NET.2008.40.3.183
  22. J.-M. Hur, T.-J. Kim, I.-K. Choi, J. B. Do, S.-S. Hong, and C.-S. Seo, 'Chemical behavior of fission products in the petrochemical process', Nucl. Eng. Technol., 162, 192 (2008). https://doi.org/10.13182/NT08-A3947
  23. S. Kitawaki, T. Shinozaki, M. Fukushima, T. Usami, N. Yahagi, and M. Kurata, 'Recovery of U-Pu alloy from MOX using pyroprocess series', Nucl. Technol., 162, 118 (2008). https://doi.org/10.13182/NT08-A3937
  24. M. F. Simpson and S. D. Herrmann, 'Modeling the pyrochemical reduction of spent $UO_{2}$ fuel in a pilot-scale reactor', Nucl. Technol., 162, 179 (2008). https://doi.org/10.13182/NT162-179
  25. J.-H. Yoo, C.-S. Seo, E.-H. Kim, and H. Lee, 'A conceptual study of pyroprocessing for recovering actinides from spent oxide fuels', Nucl. Eng. Technol., 40, 581 (2008). https://doi.org/10.5516/NET.2008.40.7.581
  26. K.-C. Song, H. Lee, J.-M. Hur, J.-G. Kim, D.-H. Ahn, and Y.-Z. Cho, 'Status of pyroprocessing technology development in Korea', Nucl. Eng. Technol., 42, 131 (2010). https://doi.org/10.5516/NET.2010.42.2.131
  27. Y. Sakamura and T. Omori, 'Electrolytic reduction and electrorefining of uranium to develop pyrochemical reprocessing of oxide fuels', Nucl. Technol., 171, 266 (2010). https://doi.org/10.13182/NT10-A10861
  28. H. Lee, G.-I. Park, K.-H. Kang, J.-M. Hur, J.-G. Kim, D.- H. Ahn, Y.-Z. Cho, and E. H. Kim, 'Pyroprocessing technology development at KAERI', Nucl. Eng. Technol., 43, 317 (2011) https://doi.org/10.5516/NET.2011.43.4.317
  29. K. M. Goff, R. W. Benedict, K. L. Howden, G. M. Teske, and T. A. Johnson, 'Pyrochemical treatment of spent nuclear fuel', Proc. Global 2005, p. 364, Tsukuba, Japan (2005).
  30. J.-M. Hur, C. S. Seo, S. S. Hong, D. S. Kang, and S. W. Park, 'Metallization of $U_{3}O_{8}$ via catalytic electrochemical reduction with $Li_{2}O$ in LiCl molten salt', React. Kinet. Catal. Lett., 80, 217 (2003). https://doi.org/10.1023/B:REAC.0000006128.15961.1d
  31. S. B. Park, B. H. Park, S. M. Jeong, J. M. Hur, C.-S. Seo, S.-H. Choi, and S. W. Park, 'Characteristics of an integrated cathode assembly for the electrolytic reduction of uranium oxide in a LiCl-$Li_{2}O$ molten salt', J. Radioanal. Nucl. Chem., 268, 489 (2006). https://doi.org/10.1007/s10967-006-0196-4
  32. Y. Sakamura, M. Kurata, and T. Inoue, 'Electrochemical reduction of $UO_{2}$ in molten $CaCl_{2}$ or LiCl', J. Electrochem. Soc., 153, D31 (2006). https://doi.org/10.1149/1.2160430
  33. Y. Sakamura, T. Omori, and T. Inoue, 'Application of electrochemical reduction to produce metal fuel material form actinide oxides', Nucl. Technol., 162, 169 (2008). https://doi.org/10.13182/NT162-169
  34. D. Kasherman and M. Skyllas-Kazacos, 'Effects of anode-cathode distance on the cell potential and electrical bath resistivity in an aluminium electrolysis cell with a sloping $TiB_{2}$ composite cathode', J. Appl. Electrochem., 18, 863 (1988). https://doi.org/10.1007/BF01016043
  35. D. H. Andersen and Z. L. Zhang, 'Study on the anodeto- cathode distance in an aluminum reduction cell', Mater. Trans. B, 42, 424 (2011).
  36. K. C. Pillai, S. J. Chung, and I.-S. Moon, 'Studies on electrochemical recovery of silver from simulated waste water from Ag(II)/Ag(I) based mediated electrochemical oxidation process', Chemosphere, 73, 1505 (2008). https://doi.org/10.1016/j.chemosphere.2008.07.047
  37. D. B. Gent, A. Wani, and A. K. Alshawabkeh, 'Experimental design for one dimensional electrolytic reactive barrier for remediation of munition constituent in groundwater', Electrochim. Acta, 86, 130 (2012). https://doi.org/10.1016/j.electacta.2012.04.043
  38. D. J. Fray, 'Emerging molten salt technologies for metals production. JOM. 53, 26-39.
  39. Allanore, A., Ortiz, L. A., Sadoway, D. R., 2011. Molten oxide electrolysis for iron production: identification of key process parameters for large scale development', TMS Annual Meeting, 121 (2001).
  40. S. M. Jeong, H.-S. Shin, S.-S. Hong, J.-M. Hur, J. B. Do, and H. S. Lee, 'Electrochemical reduction behavior of $U_{3}O_{8}$ powder in a LiCl molten salt', Electrochim. Acta, 55, 1749 (2010). https://doi.org/10.1016/j.electacta.2009.10.060
  41. J.-H. Hur, S. M. Jeong, and H. Lee, 'Underpotential deposition of Li in a molten LiCl-$Li_{2}O$ electrolyte for the electrochemical reduction of U from uranium oxides', Electrochem. Commun., 12,706 (2010). https://doi.org/10.1016/j.elecom.2010.03.012

Cited by

  1. Review—Metallic Lithium and the Reduction of Actinide Oxides vol.164, pp.8, 2017, https://doi.org/10.1149/2.0251708jes
  2. Electrochemical processing of spent nuclear fuels: An overview of oxide reduction in pyroprocessing technology vol.25, pp.6, 2015, https://doi.org/10.1016/j.pnsc.2015.11.001