• Title/Summary/Keyword: Li salt

Search Result 406, Processing Time 0.026 seconds

Synthesis and Thermal Properties of Aromatic Poly(o-hydroxyamide)s Containing Phenylene Diimide Unit (Phenylene Diimide 단위를 포함한 방향족 Poly(o-hydroxyamide)s의 합성 및 열적 특성)

  • Lee, Eung-Jae;Yoon, Doo-Soo;Choi, Jae-Kon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6029-6038
    • /
    • 2013
  • In this study we attempt to modify the backbone structure and improve processibility of PBO having high melting and glass transition temperature. A series of aromatic poly(o-hydroxyamide)s(PHAs) were synthesized by direct polycondensaton of diacides containing diimide unit with two types of bis(o-aminophenol)s including 3,3'-dihydroxybenzidine and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane. PHAs were studied by FT-IR, $^1H$-NMR, DSC and TGA. PHAs exhibited inherent viscosities in the range of 0.34~0.65 dL/g at $35^{\circ}C$ in DMAc solution. The PHA 1 and 6F-PHA 6, introducing o-phenylene unit in the main chain showed excellent solubilities in aprotic solvents such as NMP etc. However, the PHA 3, having p-phenylene unit was not even dissolved perfectly with LiCl salt. 6F-PHAs were readily soluble at room temperature in aprotic solvents except 6F-PHA 3. But they showed better solubility than that of PHAs. The polybenzoxazoles(PBOs) were quite insoluble in other solvents except partially soluble in sulfuric acid. PBOs exhibited relatively high glass transition temperatures(Tg) in the range of 306~$311^{\circ}C$ by DSC. The maximum weight loss temperature and char yields of PHA3 and 6F-PHA3 showed the highest values of $658^{\circ}C$ and $653^{\circ}C$, 62.6 % and 62.1 %, respectively.

Silica Filler Addition Effect on the Ion Conductivity of PEO Composite Electrolytes Blended with Poly(ethylene imine) (폴리에틸렌 이민과 혼합된 PEO 복합체 전해질의 이온 전도도에 미치는 실리카 필러 첨가 효과)

  • Kim, Juhyun;Kim, Kwang Man;Lee, Young-Gi;Jung, Yongju;Kim, Seok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.465-469
    • /
    • 2011
  • In this study, poly(ethyleneoxide) and poly(ethylene imine) polymer blends containing fumed silica fillers were studied in order to enhance the ion conductivity and interfacial properties. Lithium perchlorate ($LiClO_4$) as a salt, and silica($SiO_2$) as the inorganic filler were introduced into the polymer composite electrolyte composites and the composites were examined to evaluate their ionic conductivity for a possibility test of electrolyte application. As the diameter of semicircle in an impedance test became smaller, ionic conductivity of composite electrolytes had been enhanced by addition of 20 wt% silica filler. However, the conductivity was not greatly changed over 20 wt% content because the silica was sufficiently saturated in the polymer electrolytes. Diffraction peaks of PEO became weaker with the addition of inorganic fillers using XRD analysis. It showed that a crystallinity was proportionally reduced by increasing filler contents. The morphology of composite electrolyte films has been investigated by SEM. The heterogeneous morphology which silica was evenly dispersed by the strong adhesion of PEI was shown at higher contents of silica.

Study on Ionic Conductivity and Crystallinity of PEO/PMMA Polymer Composite Electrolytes containing $TiO_2$ Filler ($TiO_2$ 필러를 포함하는 PEO/PMMA 고분자 복합체 전해질의 이온전도도 및 결정화도)

  • Lee, Lyun-Gyu;Park, Soo-Jin;Kim, Seok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.758-763
    • /
    • 2011
  • In this work, polymer composite electrolytes were prepared by a blend of poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) as a polymer matrix, propylene carbonate as a plasticizer, $LiClO_4$ as a salt, and by containing a different content of $TiO_2$, by using the solution casting method. The crystallinity and ionic conductivity of the polymer electrolytes was evaluated using X-ray diffraction(XRD) and AC impedance method, respectively. The morphology of composite electrolyte film was analyzed by SEM method. From the experimental results, by increasing the $TiO_2$ content, crystallinity of PEO was reduced, and ionic conductivity was increased. In particular, the ionic conductivity was dependent on the content of $TiO_2$ and showed the highest value 15 wt%. However, when $TiO_2$ content exceeds 15 wt%, the ionic conductivity was decreased. According to the surface morphology, the ionic conductivity was decreased because the polymer composite electrolytes showed a heterogenous morphology of fillers due to immiscibility or aggregation of the filler within the polymer matrix.

The Effect of NH3 Concentration during Co-precipitation of Precursors from Leachate of Lithium-ion Battery Positive Electrode Active Materials (리튬이차전지 양극활물질의 암모니아 침출액에서 공침법에 의한 활물질 전구체의 합성에 대한 암모니아 농도의 영향)

  • Park, Sanghyuk;Ku, Heesuk;Lee, Kyoung-Joon;Song, Jun Ho;Kim, Sookyung;Sohn, Jeongsoo;Kwon, Kyungjung
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.9-16
    • /
    • 2015
  • In a recycling scheme of spent lithium ion batteries, a co-precipitation process for the re-synthesis of precursor is essential after the leaching of lithium ion battery scraps. In this study, the effect of ammonia as impurity during the co-precipitation process was investigated in order to re-synthesize a precursor of Ni-rich cathode active material $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ (NCM 622). As ammonia concentration increases from 1 M (the optimum condition for synthesis of the precursors based on 2 M of metal salt solution) to 4 M, the composition of obtained precursors deviates from the designed composition, most notably for Ni. The Ni co-precipitation efficiency gradually decreases from 100% to 87% when the concentration of ammonia solution increases from 1 M to 4 M. Meanwhile, the morphological properties of the obtained precursors such as sphericity, homogeneity and size distribution of particles were also investigated.

A Study on the Synthesis Behavior of Lithium Hydroxide by Type of Precipitant for Lithium Sulfate Recovered from Waste LIB (폐리튬이차전지에서 회수된 황산리튬 전구체로부터 침전제 종류별 수산화리튬 제조 거동 연구)

  • Joo, Soyeong;Kim, Dae-Guen;Byun, Suk-Hyun;Kim, Yong Hwan;Shim, Hyun-Woo
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.44-52
    • /
    • 2021
  • This study investigated the effect of the type of alkaline precipitant used on the synthesis of lithium hydroxide by examining the behavior of lithium hydroxide produced using lithium sulfate recovered from a waste lithium secondary battery as a raw material. The double-replacement reaction (DRR) process was used to remove the impurities contained in the lithium salt precursor of lithium sulfate and to improve the efficiency of the synthesis of lithium hydroxide. The experiment was conducted by control the molar ratio of the precursor ([Li]/[OH]), the reaction temperature, and the composition of the alkaline precipitant (KOH, Ca(OH)2, Ba(OH)2) used for the production of highly-crystalline lithium hydroxide. A secondary solid-liquid separation was performed following the reaction to remove the impurities generated, and the purified aqueous solution of lithium hydroxide was evaporated to remove the moisture and obtain the product as a powder. The crystallinity and synthesis behavior of the product were examined.

Radiation stability and radiolysis mechanism of hydroxyurea in HNO3 solution: Alpha, beta, and gamma irradiations

  • Yilin Qin;Wei Liao;Tu Lan;Fengzhen Li;Feize Li;Jijun Yang;Jiali Liao;Yuanyou Yang;Ning Liu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4660-4670
    • /
    • 2022
  • Hydroxyurea (HU) is a novel salt-free reductant used potentially for the separation of U/Pu in the advanced PUREX process. In this work, the radiation stability of HU were systematically investigated in solution by examining the effects of the type of rays (α, β, and γ irradiations), the absorbed dose (10-50 kGy), and the HNO3 concentration (0-3 mol L-1). The influence degree on HU radiolysis rates followed the order of the absorbed dose > the ray type > the HNO3 concentration, but the latter two had moderate effects on HU radiolysis products where NH4+ and NO2- were found to be the most abundant ones, suggesting that the differences of α, β, and γ rays should be considered in the study of irradiation effects. The radiolysis mechanism was explored using density functional theory (DFT) calculations, and it proposed the dominant radiolysis paths of HU, indicating that the radiolysis of HU was mainly a free radical reaction among ·H, eaq-, H2O, intermediates, and the radiolytic free radical fragments of HU. The results reported here provide valuable insights into the mechanistic understanding of HU radiolysis under α, β, and γ irradiations and reliable data support for the application of HU in the reprocessing of spent fuel.

Comparison of Growth Characteristics and Productivity of Summer Forage Crops in Sihwa Reclaimed Land (시화 간척지에서 하계 사료작물의 초종 및 품종에 따른 생육특성 및 생산성 비교)

  • Kim, Jong Geun;Jeong, Eun Chan;Kim, Meing Joong;Li, Yan Fen;Kim, Hak Jin;Lee, Su Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.2
    • /
    • pp.110-118
    • /
    • 2021
  • This study was conducted to investigate the effects of species and varieties of summer forage crops on growth characteristics and productivity in Sihwa reclaimed land. The summer forage crops used in the trial were silage corn, sorghum×sudangrass hybrid(SSH), and proso millet. For each forage species, Gwangpyeongok(GPO), P15453, P1952 and P2088 were used for silage corn, and 877F, Green star, Honey chew, and Turbo gold cultivars were used for SSH. For proso millet, Ibaekchal, Geumsilchal and Manhongchal developed by the National Institute of Crop Science were used. Silage corn and SSH were sown on May 21, 2019 and proso millet on June 4, and harvested on September 2. There was no significant difference in plant and ear height of silage corn among varieties. P1543 was the highest and P2088 was the lowest in yield of silage corn, but there was no significant difference among treatments. Among the SSH, the plant height of 877F was the highest and Turbo gold variety had the smallest (p<0.05). As for the dry matter(DM) yields, 877F had the highest at 3,862 kg/ha and Green star had the lowest at 2,669 kg/ha (p<0.05). The fresh matter yield of proso millet was 15,778 kg/ha, which was higher than that of corn or SSH, The average dry matter yield was 4,780 kg/ha, and Ibaekchal variety had the highest DM yield compared to other varieties (p<0.05). P2088 had the highest TDN content and GPO was the lowest (p<0.05). As for the SSH, the TDN content of Green star and Honey chew varieties was significantly higher, and the RFV value was the lowest in Turbo gold. The average crude protein content of proso millet was 7.03%, and the highest TDN and RFV values were 64.36% and 106 in Geumsilchal. In the experiment of the germination rate of summer forage crops according to salt concentration, silage corn showed a germination rate of 83.1% even at 0.4% salinity. In particular, P2088 and P1921 varieties had more than 80% germination rate even at 0.6% salt concentration. As for the SSH, the germination rate of 877F was 93.3% even at 0.8% salinity, and 88.3% with Honey chew, indicating higher resistance to salt concentration compared to other varieties. Proso millet showed a high germination rate of 84.0 to 88.7% even at a salt concentration of 0.6%. Considering the above results, proso millet was recommended as the most suitable forage crop species in the Sihwa reclaimed land with high salt concentration, and the Ibaekchal variety is recommended as a suitable forage crop due to its high yield.

Comparison of Environmental Stress Tolerance Between Lactobacillus fermentum Strains with High and Low Cell Surface Hydrophobicity

  • Li, Shao-Ji;Jeon, Jeong-Min;Hong, Sang-Won;So, Jae-Seong
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.257-261
    • /
    • 2008
  • Previous studies have suggested a possible correlation between cell surface hydrophobicity (CSH) and stress tolerance in Bifidobacterium. In this study, the relationship was examined between CSH and environmental stress tolerance in Lactobacillus spp. By measuring the adhesion to hexadecane, 2 Lactobacillus fermentum strains- KLB 261 and KLB 231 were found to have high and low CSH, respectively. To measure their tolerance to various stresses, cells were subjected to salt (2 M NaCl), acid (pH 2), $H_2O_2$ (0.01 %, v/v), ethanol (20%, v/v), heat ($60^{\circ}C$), and cold ($-20^{\circ}C$). Compared with KLB 231, the hydrophobic KLB 261 was found to be much more resistant to the various stresses examined. After being subjected to different stresses for a period of time, KLB 261 and KLB 231 showed 50 and 0% survivability in 2 M NaCl, 108.2 and 0.6% in 0.01 %(v/v) $H_2O_2$, 40.2%(v/v), and 3.7% at $60^{\circ}C$ incubation, 4 and 0.6% at $-20^{\circ}C$, 12.9 and 0.1 % in pH 2, 33.8 and 0.2% in 20%(v/v) ethanol, respectively. Autoaggregation test and morphological observation were also conducted in an attempt to explain these differences. These results suggested that high CSH could strengthen the stress tolerance of lactobacilli.

Anti-inflammatory Effects of the Methanol Extracts of Phlox subulata on LPS-induced RAW264.7 Macrophages and BV2 Microglia (꽃잔디 메탄올 추출물의 RAW264.7 대식세포와 BV2 미세아교세포에서의 항염증 효과)

  • Kim, Kwan-Woo;Li, Jing;Lee, Hwan;Lee, Dong-Sung;Oh, Hyuncheol;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.4
    • /
    • pp.291-298
    • /
    • 2019
  • Phlox subulata is a perennial herbaceous flower and is a member of the Polemoniaceae family. This plant is known to resist to various stresses including salt, drought, heat, and cold stresses. In this investigation, we evaluated the ant-inflammatory effect of the methanolic extract of P.subulata(PSM) on lipopolysaccharide(LPS)-induced RAW264.7 macrophages and BV2 microglia. PSM reduced the production of nitric oxide(NO) in LPS-stimulated both RAW264.7 and BV2 cells, but did not affect to the production of prostaglandin E2(PGE2). It inhibited the expression of inducible nitric oxide synthase(iNOS) and cyclooxygenase(COX)-2 in both cells. In addition, PSM suppressed the production of pro-inflammatory cytokines including interleukin(IL)-6 and tumor necrosis factor(TNF)-α. These inhibitory effects were contributed by inactivation of nuclear factor kappa B(NF-κB) and mitogen-activated protein kinases(MAPKs) pathways by PSM. Thus, these results suggested that P.subulata can be a candidate material to treat inflammatory diseases.

The Characteristics of PEO-Based Composite Electrolyte added functionalized SiO_2$ Filler and (3-cyanopropyl)methylsiloxane cyclics. (기능성 실리카 filler와 (3-cyanopropyl)methylsiloxane cyclics를 가소제로 이용해 제조되어진 PEO-Based 전해질의 특성 연구)

  • 이재필;김정남;문희수;이승원;이영식;서동학;김인수;박종완
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.214-214
    • /
    • 2003
  • 고체 고분자 전해질에 대한 연구는 1979년 wright와 Armand에 처음 시작된 이래로 지난 20여년간 연구가 계속적으로 지속되고 있다. 전지의 적용되기 위해 전해질이 갖추어야 할 조건중에 이온전도도가 상온에서 10-4 S/cm 이상의 전도도를 나타내야 하지만 지금까지 연구되고 있는 여러 고체 고분자 전해질은 이런 조건을 만족시키지 못하고 있는 실정이다. 본 연구에서는 이런 상온에서의 이온 전도성을 향상시키기 위해 여러 종류의 실리카와 세라믹 계열의 첨가제를 첨가하여 이온전도성의 향상을 꾀하고자 하였다. 본 연구에서는 고체 고분자 전해질의 host polymer로써 분자량 400,000 의 Polyethylene oxide를 사용하였으며 Lithuim salt로는 Lithium (bisperfluroethylsulfonyl)imide(3M)를 기본적으로 사용하였다. 여기에 가소제의 역활로써 (3-cyanopropyl)methylsiloxane cyclics를 첨가하였고 표면그룹이 CH3와 OH기로 이루어진 기능성 나노 실리카를(<11nm)이용하여 함량별 전기 화학적 특성 및 기본 물성을 측정하였다. 기본적으로 이 네 가지 물질을 유기용매 Acetonitril에 잘 용해하여 Solid Casting방법으로 80-100 마이크로의 복합고분자 전해질을 제조하였다. Homogeneous하고 uniform한 필름 제조하기 위해 9$0^{\circ}C$에서 열처리를 24h 동안 실시하였다. 제조되어진 복합고분자전해질은 XRD를 통하여 결정성을 조사하였고 DSC를 이용하여 유리 전이온도 및 결정화도를 조사하였다. 복합고체고분자의 전기화학적 성질을 평가하기 위해 blocking electrode를 제작하여 임피던스 스펙트로 스코피를 이용하여 이온전도성을 측정하였다. 또한 복합 고분자 전해질의 온도의존성에 대해서도 조사하였다. 또한 실제 전지의 작동구간에서의 전해질의 안정성을 확인하기 위해 LSV를 측정하였고. Li metal을 사용하여 non-blocking electrode를 제작하여 복합고분자 전해질과의 계면저항을 측정하였다.

  • PDF