DOI QR코드

DOI QR Code

The Effect of NH3 Concentration during Co-precipitation of Precursors from Leachate of Lithium-ion Battery Positive Electrode Active Materials

리튬이차전지 양극활물질의 암모니아 침출액에서 공침법에 의한 활물질 전구체의 합성에 대한 암모니아 농도의 영향

  • Park, Sanghyuk (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Ku, Heesuk (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Lee, Kyoung-Joon (Korea Electronics Technology Institute, Advanced Batteries Research Center) ;
  • Song, Jun Ho (Korea Electronics Technology Institute, Advanced Batteries Research Center) ;
  • Kim, Sookyung (Urban Mine Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Sohn, Jeongsoo (Urban Mine Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Kwon, Kyungjung (Department of Energy and Mineral Resources Engineering, Sejong University)
  • 박상혁 (세종대학교 에너지자원공학과) ;
  • 구희숙 (세종대학교 에너지자원공학과) ;
  • 이경준 (전자부품연구원 차세대전지센터) ;
  • 송준호 (전자부품연구원 차세대전지센터) ;
  • 김수경 (한국지질자원연구원) ;
  • 손정수 (한국지질자원연구원) ;
  • 권경중 (세종대학교 에너지자원공학과)
  • Received : 2015.06.05
  • Accepted : 2015.10.19
  • Published : 2015.12.30

Abstract

In a recycling scheme of spent lithium ion batteries, a co-precipitation process for the re-synthesis of precursor is essential after the leaching of lithium ion battery scraps. In this study, the effect of ammonia as impurity during the co-precipitation process was investigated in order to re-synthesize a precursor of Ni-rich cathode active material $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ (NCM 622). As ammonia concentration increases from 1 M (the optimum condition for synthesis of the precursors based on 2 M of metal salt solution) to 4 M, the composition of obtained precursors deviates from the designed composition, most notably for Ni. The Ni co-precipitation efficiency gradually decreases from 100% to 87% when the concentration of ammonia solution increases from 1 M to 4 M. Meanwhile, the morphological properties of the obtained precursors such as sphericity, homogeneity and size distribution of particles were also investigated.

폐리튬이차전지 양극재 재활용기술에 있어 침출과정을 통해 회수된 유가금속을 다시 원하는 조성의 전구체로 재합성하는 공침공정은 필수적이다. 본 연구에서는 고용량 특성의 Ni-rich 조성인 $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ (NCM 622) 양극재의 전구체 재합성 시 암모니아가 불순물로서 미치는 영향을 확인하는 공침실험을 수행하였다. SEM 및 EDS 분석결과 양극재 전구체 최적 합성조건(금속염 용액 농도 2 M 기준 암모니아수 농도 1 M)에서 암모니아 농도가 증가할수록 원하는 조성의 전구체가 제조되지 않음을 확인하였다. Ni의 설계함량인 60 mol%를 기준하여 암모니아수 농도 1 M ~ 4 M 조건에서 각각 100%, 98%, 95%, 87%에 해당하는 공침효율을 보여주었다. 또한 제조된 전구체 입자들의 구형화도, 균일도 및 크기분포특성 등의 형상학적 특징을 확인하였다.

Keywords

References

  1. Park, J. K. et al., 2010: Principles and applications of lithium secondary batteries, Hongrung publishing company, pp. 52-54.
  2. Sun, Y.-K. et al., 2004: Synthetic optimization of $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ via co-precipitation, Electrochim. Acta, 50, pp. 939-948. https://doi.org/10.1016/j.electacta.2004.07.038
  3. Kim, H.-S. et al., 2013: Electrochemical performance of $Li[Ni_{0.7}Co_{0.1}Mn_{0.2}]O_2$ cathode materials using a coprecipitation method, J. Nanosci. Nanotechnol., 13, pp. 3303-3306. https://doi.org/10.1166/jnn.2013.7258
  4. Noh, M.J. and Cho, J.P., 2013: Optimized synthetic conditions of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode materials for high rate lithium batteries via co-precipitation method, J. Electrochem. Soc., 160, pp. A105-A111.
  5. Son, J.-T. et al., 2013: Synthesis of $Li[Ni_{0.225}Co_{0.125}Mn_{0.65}]O_2$ as a positive electrode for lithium-ion batteries by optimizing its synthesis conditions via a hydroxide coprecipitation method, J. Phys. Chem. Solids, 74, pp. 1185-1195. https://doi.org/10.1016/j.jpcs.2013.02.006
  6. Xu, S. et al., 2013: Synthesis and performance of $Li[(Ni_{1/3}Co_{1/3}Mn_{1/3})_{1-x}Mg_{x}]O_2$ prepared from spent lithium ion batteries, J. Hazard. Mater., 246-247, pp. 163-172. https://doi.org/10.1016/j.jhazmat.2012.12.028
  7. Nowak, S. et al., 2014: Effect of impurities caused by a recycling process on the electrochemical performance of $Li[Ni_{0.33}Co_{0.33}Mn_{0.33}]O_2$, J. Electroanal. Chem., 726, pp. 91-96. https://doi.org/10.1016/j.jelechem.2014.05.017
  8. Kim, S.K. et al., 2014: Recycling process of spent battery modules in used hybrid electric vehicles using physical/chemical treatments, Res. Chem. Intermed., 40, pp. 2447-2456. https://doi.org/10.1007/s11164-014-1653-2
  9. Noh, M., and Cho, J., 2013: Optimized Synthetic Conditions of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathode Materials for High Rate Lithium Batteries via Co-Precipitation Method, J. Electrochem. Soc., 160, pp. A105-A111.
  10. Deng, C. et al., 2008: Effect of synthesis condition on the structure and electrochemical properties of $Li[Ni_{1/3}Mn_{1/3}Co_{1/3}]O_2$ prepared by hydroxide co-precipitation method, Electrochim. Acta, 53, pp. 2441-2447. https://doi.org/10.1016/j.electacta.2007.10.025
  11. Zhang S. et al., 2010: Synthetic optimization of spherical $Li[Ni_{1/3}Mn_{1/3}Co_{1/3}]O_2$ prepared by a carbonate coprecipitation method, Powder Technol., 198, pp. 373-380. https://doi.org/10.1016/j.powtec.2009.12.002
  12. Liang L. et al., 2014: Co-precipitation synthesis of $Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)_{2}$ precursor and characterization of $Ni_{0.6}Co_{0.2}Mn_{0.2}O_{2}$ cathode material for secondary lithium batteries, Electrochim. Acta, 130, pp. 82-89. https://doi.org/10.1016/j.electacta.2014.02.100
  13. Jeon H.-J. et al., 2013: Synthesis of $Lix[Ni_{0.225}Co_{0.125}Mn_{0.65}]O_{2}$ as a positive electrode for lithium-ion batteries by optimizing its synthesis conditions via a hydroxide coprecipitation method, J. Phys. Chem. Solids, 74, pp. 1185-1195. https://doi.org/10.1016/j.jpcs.2013.02.006
  14. Lee, C.K. and Kim, T.-H., 2000: Leaching of cathodic active materials from spent lithium ion battery, J. of Korean Inst. of Resources Recycling, 9, pp. 37-43.
  15. Kim, D.W. and Jang, S.T., 2013: Recovery of lithium and leaching behavior of NCM powder by carbon reductive treatment from $Li(NCM)O_2$ system secondary battery scraps, J. of Korean Inst. of Resources Recycling, 22, pp. 62-69.
  16. Lee, M.S. et al., 2014: Leaching of valuable metals from NCM cathode active materials in spent lithium-ion battery by malic acid, J. of Korean Inst. of Resources Recycling, 23, pp. 21-29.
  17. Bhuntumkomol, K., Han, K.N. and Lawson, F., 1982: The leaching behavior of nickel oxides in acid and in Ammoniacal solutions, Hydrometallurgy, 8, pp. 147-160. https://doi.org/10.1016/0304-386X(82)90041-X
  18. Das, R.P. et al., 1986: Leaching of manganese nodules in ammoniacal medium using glucose as reductant, Hydrometallurgy, 16, pp. 335-344. https://doi.org/10.1016/0304-386X(86)90008-3
  19. Rokukawa, N., 1992: Extraction of nickel, cobalt and copper from ocean cobalt crusts with ammoniacal alkaline solution, Shigen-to-sozai, 108(3), pp. 189-191.
  20. Niinae, M. et al., 1996: Preferential leaching of cobalt, nickel and copper from cobalt-rich ferromanganese crusts with ammoniacal solution using ammonium thiosulfate and ammonium sulfite as reducing agents, Hydrometallurgy, 40, pp. 111-121. https://doi.org/10.1016/0304-386X(94)00085-H
  21. Senanayake, G. et al., 2010: Comparative leaching of spent zinc-manganese-carbon batteries using sulfur dioxide in ammoniacal and sulfuric acid solutions, Hydrometallurgy, 105, pp. 36-41. https://doi.org/10.1016/j.hydromet.2010.07.004
  22. Ku, H.S. et al., 2015: Ammoniacal leaching for recovery of valuable metals from spent lithium-ion battery materials, J. of Korean Inst. of Resources Recycling, 24, pp. 44-50. https://doi.org/10.7844/kirr.2015.24.3.44
  23. Li, J. et al., 2013: High capacity $0.5Li_{2}MnO_{3}{\cdot}0.5LiNi_{0.33}Co_{0.33}Mn_{0.33}O_{2}$ cathode material via a fast co-precipitation method, Electrochim. Acta, 87, pp. 686-692. https://doi.org/10.1016/j.electacta.2012.09.024
  24. Du, K. et al., 2014: Co-precipitation synthesis of $Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)_{2}$ precursor and characterization of $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_{2}$ cathode material for secondary lithium batteries, Electrochim. Acta, 130, pp. 82-89. https://doi.org/10.1016/j.electacta.2014.02.100
  25. van Bommel, A. and Dahn, J.R., 2009: Synthesis of spherical and dense particles of the pure hydroxide phase $Ni_{1/3}Mn_{1/3}Co_{1/3}(OH)_{2}$, J. Electrochem. Soc., 156, A362-A365. https://doi.org/10.1149/1.3079366
  26. Hu Chuan-yue et al., 2011: Effects of synthesis conditions on layered $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_{2}$ positive-electrode via hydroxide co-precipitation method for lithium-ion batteries, Trans. Nonferrous Met. Soc. China., 21, 114-120. https://doi.org/10.1016/S1003-6326(11)60686-9
  27. Tang Z.X. et al., 1991: Preparation of manganese ferrite fine particles from aqueous solution, J. Stat. Phys., 146, pp. 38-52.
  28. Lee M.-H. et al., 2004: Synthetic optimization of $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_{2}$ via co-precipitation, Electrochim. Acta, 50, pp. 939-948. https://doi.org/10.1016/j.electacta.2004.07.038
  29. Xiang, Y., Yin, Z. and Li, X., 2014: Synthesis and characterization of manganese-, nickel-, and cobaltcontaining carbonate precursors for high capacity Li-ion battery cathodes, J. Solid State Electrochem., 18, pp. 2123-2129. https://doi.org/10.1007/s10008-014-2461-8