• Title/Summary/Keyword: Levy Method

Search Result 46, Processing Time 0.02 seconds

Estimation of Equivalent Circuit Parameters for Electroacoustic Transducer Using Recursive Levy Method (Levy Method를 이용한 전기음향 변환기의 등가회로변수 추정)

  • 전병두;이상욱;송준일;성굉모
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.345-348
    • /
    • 2000
  • 변환기의 해석 및 선계에 있어서 측정되어진 데이터로부터 그 변환기의 진기, 기계, 음향적인 특성변수를 추출하는 기술의 확보는 설계되어진 변환기의 검증 및 최적화를 위해서 필수적이다. 이와 관련한 기존의 방법은 측정방법이 번거롭고 그 결과 또한 많은 오차를 포함하고 있는 관계로 변환기의 정확한 특성변수를 추출하는데 어려움이 많았다. 본 연구에서는 전기음향변환기의 정확한 특성변수 추출을 위하여 기존의 방법과는 달리 Levy Method 반복적으로 사용하여 그 오차를 최소화하는 알고리듬을 개발하였다.

  • PDF

Analysis for A Partial Distribution Loaded Orthotropic Rectangular Plate with Various Boundary Condition (다양한 경계조건에서 부분 분포 하중을 받는 이방성 사각평판 해석)

  • See, Sangkwang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.13-22
    • /
    • 2018
  • In this study, a governing differential equation for the bending problem of orthotropic rectangular plate is drived. It's exact solution for various boundary conditions is presented. This solution follows traditional method like Navier's solution or Levy's solution that transforms the governing differential equation into an algebraic equation by using trigonometric series. To obtain a solution by Levy's method, it is required that two opposite edges of the plate be simply supported. And the boundary conditions, for which the Navier's method is applicable, are simply supported edge at all edges. In this study, it overcomes the limitations of the previous Navier's and Levy's methods.This solution is applicable for any combination of boundary conditions with simply supported edge and clamped edge in x, y direction. The plate could be subjected to uniform, partially uniform, and line loads. The advantage of the solution is that it is the exact solution as well as it overcomes the limitations of the previous Navier's and Levy's methods. Calculations are presented for orthotropic plates with nonsymmetric boundary conditions. Comparisons between the result of this paper and the result of Navier, Levy and Szilard solutions are made for the isotropic plates. The deflections were in excellent agreement.

Estimation of Equivalent Circuit Parameters for Dual Resonance Electroacoustic Transducer Using Iterative Levy Method (두 개의 공진점을 갖는 광대역 초음파 전기음향 변환기의 등가회로변수 추정)

  • Lim, Jun-Seok;Pyeon, Yong-Guk
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.18-23
    • /
    • 2012
  • A method to determine the equivalent circuits of broadband ultrasound transducers is necessary for designing filters that match the impedances of the transducer and the analysis of the transducer. A method is proposed to determine the equivalent circuits of broadband transducers with 2 resonances in the frequency band of interest. The circuit parameters are estimated by iterative Levy method with the measured electrical conductance data. The method is illustrated by computing the conductance and susceptance of the equivalent circuits of 3 types of broadband transducers. The equivalent circuit of a transducer.

Fundamental Small-signal Modeling of Li-ion Batteries and a Parameter Evaluation Using Levy's Method

  • Zhang, Xiaoqiang;Zhang, Mao;Zhang, Weiping
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.501-513
    • /
    • 2017
  • The fundamental small-signal modeling of lithium-ion (Li-ion) batteries and a parameter evaluation approach are investigated in this study to describe the dynamic behaviors of small signals accurately. The main contributions of the study are as follows. 1) The operational principle of the small signals of Li-ion batteries is revealed to prove that the sinusoidal voltage response of a Li-ion battery is a result of a sinusoidal current stimulation of an AC small signals. 2) Three small-signal measurement conditions, namely stability, causality, and linearity, are proved mathematically proven to ensure the validity of the frequency response of the experimental data. 3) Based on the internal structure and electrochemical operational mechanism of the battery, an AC small-signal model is established to depict its dynamic behaviors. 4) A classical least-squares curve fitting for experimental data, referred as Levy's method, are introduced and developed to identify small-signal model parameters. Experimental and simulation results show that the measured frequency response data fit well within reading accuracy of the simulated results; moreover, the small-signal parameters identified by Levy's method are remarkably close to the measured parameters. Although the fundamental and parameter evaluation approaches are discussed for Li-ion batteries, they are expected to be applicable for other batteries.

Calculation of the Transfer Function for a Liquid Rocket Engine using a Dynamic Model (액체로켓 엔진의 동특성 모델을 이용한 전달함수의 계산)

  • Park, Soon-Young;Lee, Eun-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.436-442
    • /
    • 2012
  • In the process of liquid rocket engine design, obtaining method of the dynamic characteristics of engine should be emphasized typically to determine the control logic and algorithms of the throttle valves in the propellant feed pipeline. However, determining the dynamic characteristics of an engine through the autonomous test is very hard and laborious, so that the numerical approach is prevailing. In this study, using the previously developed dynamic analysis model of the engine around the steady state, we introduced a disturbance to this model, and obtained the dynamic response in the time domain. And by applying the well-known Levy method to this temporal response, we could deduce the transfer function of that system that can give us various information of engine and can be manipulated to design the control system.

  • PDF

Levy-type solution for analysis of a magneto-electro-elastic panel

  • Jia He;Xuejiao Zhang;Hong Gong;H. Elhosiny Ali;Elimam Ali
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.719-729
    • /
    • 2023
  • This paper studies electro-magneto-mechanical bending studying of the cylindrical panels based on shear deformation theory. The cylindrical panel is constrained with two simply-supported edges at longitudinal direction and two clamped boundary conditions at circumferential direction. The governing equations are derived based on the principle of virtual work in cylindrical coordinate system. Levy-type solution of the governing equations is derived to reduce two dimensional PDEs to a 2D ODEs. The reduced ordinary differential equation is solved using the Eigen-value Eigen-vector method for the clamped-clamped boundary condition. The electro-magneto-mechanical bending results are obtained to show that every displacement, rotation and electromagnetic potentials how change with changes of initial electromagnetic potentials and mechanical loads along longitudinal and circumferential directions.

Training Incentives in the Korean Levy-Grant System and the Performance: Evidences from the KLIPS Data (재직자 직업훈련 관련 공적재정의 구조와 성과: 효과 분석)

  • Lee, Chul-In;YOO, Gyeongjoon
    • KDI Journal of Economic Policy
    • /
    • v.33 no.3
    • /
    • pp.87-120
    • /
    • 2011
  • This paper examines how the levy-grant system for on-the-job training affects individual workers' training level and the subsequent wage growth. Some notable results include: (i) the workers at the firms facing high net benefits (i.e., grant minus levy) receive more firm training indeed, and (ii) training provision raises post-training earnings substantially. All these results are found to be robust to changes in firm size and estimation method.

  • PDF

Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory

  • Behera, Susanta;Kumari, Poonam
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.213-232
    • /
    • 2018
  • First time, an exact solution for free vibration of the Levy-type rectangular laminated plate is developed considering the most efficient Zig-Zag theory (ZIGT) and third order theory (TOT). The plate is subjected to hard simply supported boundary condition (Levy-type) along x axis. Using the equilibrium equations and the plate constitutive relations, a set of 12 m first order differential homogenous equations are obtained, containing displacements and stress resultant as primary variables. The natural frequencies of a single-layer isotropic, multi-layer composites and sandwich plates are tabulated for three values of length-to-thickness ratio (S) and five set of boundary conditions and further assessed by comparing with existing literature and recently developed 3D EKM (extended Kantorovich method) solution. It is found that for the symmetric composite plate, TOT produces better results than ZIGT. For antisymmetric and sandwich plates, ZIGT predicts the frequency for different boundary conditions within 3% error with respect to 3D elasticity solution while TOT gives 10% error. But, ZIGT gives better predictions than the TOT concerning the displacement and stress variables.

Boundary discontinuous Fourier solution of thin Levy type flat and doubly curved shallow shells

  • Ahmet Sinan Oktem;Ilke Algula
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.595-608
    • /
    • 2024
  • This study presents a static analysis of thin shallow cylindrical and spherical panels, as well as plates (which are a special case of shells), under Levy-type mixed boundary conditions and various loading conditions. The study utilizes the boundary discontinuous double Fourier series method, where displacements are expressed as trigonometric functions, to analyze the system of partial differential equations. The panels are subjected to a simply supported type 3 (SS3) boundary condition on two opposite edges, while the remaining two edges are subjected to clamped type 3 (C3) boundary conditions. The study presents comprehensive tabular and graphical results that demonstrate the effects of curvature on the deflections and moments of thin shallow shells made from symmetric and antisymmetric cross-ply laminated composites, as well as isotropic steel materials. The proposed model is validated through comparison with existing literature, and the convergence characteristics are demonstrated. The changing trends of displacements and moments are explained in detail by investigating the effect of various parameters, such as stacking lamination, material types, curvature, and loading conditions.

Bending analysis of smart functionally graded plate using the state-space approach

  • Niloufar Salmanpour;Jafar Rouzegar;Farhad Abad;Saeid Lotfian
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.525-541
    • /
    • 2024
  • This study uses the state-space approach to study the bending behavior of Levy-type functionally graded (FG) plates sandwiched between two piezoelectric layers. The coupled governing equations are obtained using Hamilton's principle and Maxwell's equation based on the efficient four-variable refined plate theory. The partial differential equations (PDEs) are converted using Levy's solution technique to ordinary differential equations (ODEs). In the context of the state-space method, the higher-order ODEs are simplified to a system of first-order equations and then solved. The results are compared with those reported in available references and those obtained from Abaqus FE simulations, and good agreements between results confirm the accuracy and efficiency of the approach. Also, the effect of different parameters such as power-law index, aspect ratio, type of boundary conditions, thickness-to-side ratio, and piezoelectric thickness are studied.