• Title/Summary/Keyword: Levitation control

검색결과 286건 처리시간 0.031초

Decoupling of Thrust Force and Levitation Force of Transverse Flux Linear Induction Motor by the Active Compensation of Magnetic force across the Air-Gap (공극력의 능동적 보상을 통한 횡자속 선형 유도 구동기의 추력과 부상력의 비연성화)

  • 정광석;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제21권11호
    • /
    • pp.91-98
    • /
    • 2004
  • TFLIM(Transverse Flux Linear Induction Motor), making its closed magnetic path with the direction of the traveling field orthogonal, had been developed to decrease an edge effect of the general induction motor. To control the levitation force and the thrust force on the secondary part of TFLIM independently, the various methodologies have been presented. When we try to achieve the independent control using only the multi-phase inputs assigned in the stator coils as an approach, in which condition we can minimize the coupling effect between two forces\ulcorner In this paper, we show the qualitative influence of a slip frequency, an ac magnitude, a dc offset superposed in the ac power, and a major parameter of TFLIM on the couple through the computer simulation. And to realize the independent motions between levitation and thrust motion without any auxiliary means fur isolation of the secondary part of TFLIM, the decouple compensator is suggested, including the experimental results.

Flight Control Experiment of High-Speed Aero-Levitation Electric Vehicle Scale-Model in Wind-Tunnel (공기부상 초고속 운행체 축소모델의 풍동내 비행제어 실험)

  • Park, Young-Geun;Choi, Seung-Kie;Cho, Jin-Soo;Song, Yong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제11권3호
    • /
    • pp.246-253
    • /
    • 2005
  • An experimenal study on flight control of high-speed AEV(Aero-levitation Electric Vehicle) scale model in wind-tunnel is conducted. The AEV is to fly at very low altitude in predesigned track so that it is always under the wing-in-ground effect. The experiment is intended to fly the scale model to follow the predesigned altitude schedule while holding its attitude (pitch, roll, and yaw). Especially, the altitude changes for climb, cruise, and descent with constant pitch angle are most important maneuvers. The experiment shows that the required mission flights can be performed with appropriate sensors, processors, and actuators.

A Study on Four Magnetic Levitation Actuator Control (4개의 자기 부상 액츄에이터 제어에 관한 연구)

  • Won, Jin-Kuk;Mon, Ji-Woo;Cho, Yun-Hyun;Koo, Dae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.940-941
    • /
    • 2008
  • Recently, there are a great many research for magnetic levitation(Maglev) system. Maglev system is eco-friendly used in a place that is not friction. But Maglev is system that inductance is changed according to air-gap, so this is unstable system. In this paper, we simulate 1 Maglev actuator Control and we do an experience on 4 Maglev actuator system control. however, we get a problem of 4 maglev actuator control, because Maglev is 3 DOF(Degree of Freedom). so we control average err of 2 Maglev actuator in the rear.

  • PDF

Neural Network based Fuzzy Type PID Controller Design (신경 회로망 기반 퍼지형 PID 제어기 설계)

  • 임정흠;권정진;이창구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.86-86
    • /
    • 2000
  • This paper describes a neural network based fuzzy type PID control scheme. The PID controller is being widely used in industrial applications. however, it is difficult to determine the appropriate PID gains for (he nonlinear system control. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based fuzzy type PID controller whose scaling factors were adjusted automatically. The value of initial scaling factors of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods and then they were adjusted by using neural network control techniques. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The result of practical experiment on the magnetic levitation system, which is known to be hard nonlinear, showed the proposed controller's excellent performance.

  • PDF

The Methods of Rail Joint Detection and Gap Signal Compensation for Levitation Control of Urban Maglev (도시형 자기부상열차 부상제어를 위한 궤도 이음매 검출 및 공극 신호의 보상 방법)

  • Kim, Haeng-Koo;Lee, Jong-Min;Kang, Byung-Kwan;Kim, Kuk-Jin;Kim, Chun-Kyung
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.922-927
    • /
    • 2007
  • The present urban maglev which has been developed in Korea is controlled by 4-edge control method over each bogie. The control output which is derived from two gap sensors and one vertical acceleration sensor controls magnet to maintain a nominal gap. But, the gap signal acts as a big disturbance in rail joint though two gap sensors are used and finally result in unstable response and poor ride comfort. This paper treats of a method to compensate the gap signal in rail joint for the levitation control of urban maglev. The physically abnormal change of gap is detected when one gap sensor passes a rail joint, the disturbance of gap in rail joint is estimated. Finally the disturbance in gap signal is eliminated by processing the information of vehicle speed and estimated disturbance in when the other gap sensor passes a rail joint.

  • PDF

Robust Pole Assignment Control for Linear Systems with Structured Uncertainty (구조적 불확실성을 갖는 선형계의 강인한 극배치 제어)

  • Kim, Young-Chol
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • 제41권3호
    • /
    • pp.300-310
    • /
    • 1992
  • This paper deals with the problem of robust pole-assignment control for linear systems with structured uncertainty. It considers two cases whose colsed-loop characteristic equations are presented as a family of interval polynomial and polytopic polynomial family respectively. We propose a method of finding the pole-placement region in which the fixed gain controller guarantees the required damping ratio and stability margin despite parameter perturbation. Some results of Kharitonov like stability and two kinds of transformations are included. As an illustrative example, we show that the proposed method can apply effectivly to the single magnet levitation system including some uncertainties (mass, inductance etc.).

  • PDF

Robust Controller Design for Perturbed Systems and Control of an Attractive Type Magnetic Levitation System (섭동계의 강인한 제어기 설계와 흡인형 자기부상계 제어)

  • 김상봉;김환성;정남수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제16권2호
    • /
    • pp.226-235
    • /
    • 1992
  • This paper is concerned with the robust control of LQ state feedback regulators with poles in a specified region in the presence of system uncertainty. The robust stability results for the constant and nonlinear time varying perturbations are derived in terms of bounds of the perturbed system matrices and the weighting matrices in the performance index of LQ problem. The theoretical results are applied to the gap control problem of an attractive-type-magnetic levitation system and the effectiveness is proved by the implementation of digital control using 16 bits microcomputer.

Design and Analysis of a New Hybrid Electromagnetic Levitation System

  • Na, Uhn Joo
    • Journal of the Korean Society of Industry Convergence
    • /
    • 제22권1호
    • /
    • pp.29-37
    • /
    • 2019
  • A new permanent magnet biased hybrid maglev actuator is developed. Compared to the classical hybrid maglev actuators, the new maglev has unique flux paths such that bias fluxes are separated with control flux paths. The control flux paths have minimum reluctances only developed by air gaps, so the currents to produce control fluxes can be minimized. The consumed power to operate this maglev system can also be minimized. The gravity load can be compensated with the static magnetic forces developed by the permanent magnet bias fluxes while external disturbances are controlled with the bidirectional AC magnetic forces developed by control fluxes by currents. 1-D circuit model is developed for this model such that the flux densities and magnetic forces are extensively analyzed. 3-D finite element model is also developed to analyze the performances of the maglev actuator.

A Noble Control Scheme of Hybrid Magnet Levitation Train (복합자석형 자기부상차량의 제어특성 개선)

  • Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.127-130
    • /
    • 1991
  • A magnetic levitation system with hybrid magnets, which is composed of permanent magnets and electromagnets, consumes less power than the conventional attraction type system. A parallel complementary controller on the lift controller is proposed to reduce the sensitivity for parameter variation and force disturbance. Simulation and experiment show that the lift system has robustness to force disturbance.

  • PDF

Air-gap Disturbance Attenuation of Magnetic Levitation Systems using Discrete Kalman Filter (이산형 칼만필터를 이용한 자기부상시스템의 공극외란 감쇄)

  • Sung, H.K.;Jung, B.S.;Jang, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.253-255
    • /
    • 2004
  • Conventional magnetic levitation systems could show unsatisfactory performance under air-gap disturbance due to rail irregularities. In this paper, we propose a feedback control system with discrete Kalman filter for air-gap disturbance attenuation. It is shown that excellent system performance can be obtained with the use of discrete Kalman filter, and that results from experiments agree well with those of simulations.

  • PDF