• 제목/요약/키워드: Levenberg -Marquardt Method

검색결과 89건 처리시간 0.024초

DirectX를 이용한 실시간 영상 모자익 (Real-Time Image Mosaic Using DirectX)

  • 정민영;최승현;배기태;이칠우
    • 정보처리학회논문지B
    • /
    • 제10B권7호
    • /
    • pp.803-810
    • /
    • 2003
  • 본 논문에서는 일반 PC에서 방사형으로 배치된 카메라를 통해 획득되는 비디오 영상을 하나의 대형 고해상도 영상으로 만드는 실시간 영상모자익 기법에 관해 기술한다. 제안된 방법은 먼저 위상 상관 알고리즘을 사용하여 인접하는 두 영상간의 수평 및 수직 이동거리를 산출한 다음, Levenberg-Marquardt 방법을 사용하여 카메라 사이의 정확한 변환 행렬을 계산한다. 마지막으로 DirectX의 텍스처 매핑 함수에 변환행렬을 적용하여 입력영상들을 하나의 대형 영상으로 합성한다. 이 방법은 특징은 일반 개인용 컴퓨터에서 널리 사용되고 있는 그래픽 API DirectX를 영상 합성과정에 이용하기 때문에 특별한 장치와 기계어 수준의 프로그래밍 없이도 실시간 영상 모자익을 구현할 수 있다는 것이다.

센서퓨젼 기반의 인공신경망을 이용한 드릴 마모 모니터링 (Sensor Fusion and Neural Network Analysis for Drill-Wear Monitoring)

  • ;권오양
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.77-85
    • /
    • 2008
  • The objective of the study is to construct a sensor fusion system for tool-condition monitoring (TCM) that will lead to a more efficient and economical drill usage. Drill-wear monitoring has an important attribute in the automatic machining processes as it can help preventing the damage of tools and workpieces, and optimizing the drill usage. In this study, we present the architectures of a multi-layer feed-forward neural network with Levenberg-Marquardt training algorithm based on sensor fusion for the monitoring of drill-wear condition. The input features to the neural networks were extracted from AE, vibration and current signals using the wavelet packet transform (WPT) analysis. Training and testing were performed at a moderate range of cutting conditions in the dry drilling of steel plates. The results show good performance in drill- wear monitoring by the proposed method of sensor fusion and neural network analysis.

손실 반공간에 묻힌 원통형 산란체의 검출 및 영상제구성에 의한 식별 (Iterative Teconstruction of a Cylinder Buried in the Lossy Half Space)

  • 김정석;나정웅
    • 한국전자파학회논문지
    • /
    • 제11권6호
    • /
    • pp.939-945
    • /
    • 2000
  • 손실 반공간 묻혀 원동형 산란체와 주면 매질의 특성을 반복 기법 최적화 역산란을 적용하여 구했다. 산란파는 경계요소법을 이용하여 계산하였으며 산란체의 크기, 위치 내부매질의 비유전율, 도전율, 주변 매질의 비유전율, 도전율 등의 파라미터는 측정 산란파로부터 유전 알고리즘과 Levenberg-Marquardt 알고리즘의 혼합 알고리즘을 이요하여 역으로 계산하였다. 산란타의 측정오차에 의한 illposedness는 파수 영역에서 자수함수적으로 감쇠하는 감쇠모드를 제거하여 안정하시켰다.

  • PDF

신경망 모형을 적용한 금강 공주지점의 수질예측 (Water Quality Forecasting at Gongju station in Geum River using Neural Network Model)

  • 안상진;연인성;한양수;이재경
    • 한국수자원학회논문집
    • /
    • 제34권6호
    • /
    • pp.701-711
    • /
    • 2001
  • 수질 인자들은 다양하고 관계가 복잡하여 수질 변화를 예측하는데 많은 어려움이 있다. 따라서 입력과 출력이 비교적 용이하고 비선형 예측에 적합한 신경망 모형을 이용하여 금강유역 공주지점의 DO, BOD, TN에 대한 월수질 예측을 수행하고 ARIMA 모형과 비교하여 적용 가능성을 검토하였다. 사용된 신경망 모형은 학습을 위해 BP(Back Propagation) 알고리즘을 적용하였으며 학습을 향상시키기 위한 모멘트-적응학습율(Moment-Adaptive learming rate) 방법을 이용한 MANN 모형, 레번버그-마쿼트(Levenberg-Marquardt) 방법을 이 용한 LMNN 모형, 그리고 정성적인 판단인자를 첨가하여 정량적인 월 수질 자료와 분별, 학습하 도록 은닉층을 분리한 MNN 모형으로 구분하였다. 대체로 신경망 모형의 예측치가 실측치에 근사한 결과를 보였으며, 은닉층을 분리한 MNN 모형이 가장 우수한 결과를 보였다.

  • PDF

고속도로 통행량 예측을 위한 새로운 동적 알고리즘 (A New Dynamic Prediction Algorithm for Highway Traffic Rate)

  • 이광연;박기섭
    • 한국시뮬레이션학회논문지
    • /
    • 제29권3호
    • /
    • pp.41-48
    • /
    • 2020
  • 본 논문에서는 고속도로 통행량을 보다 정확하게 예측하기 위한 새로운 방법으로 통행량에 대한 누적분포함수를 이용한 동적 예측 알고리즘을 제시한다. 여기서 누적분포함수의 근사함수를 수치적 방법인 내츄럴 큐빅 스플라인(natural cubic spline) 보간법과 레벤버그-마쿼트(Levenberg-Marquardt) 방법을 통해 얻는다. 이 알고리즘은 금융수학에서 활용하는 누적 분포함수를 이용한 난수 생성 알고리즘을 통행량 예측에 알맞도록 새롭게 구조화한 것이다. 이 알고리즘으로 고속도로 통행량을 시뮬레이션하면 실제 통행량과 매우 흡사한 결과를 얻을 수 있음을 확인할 수 있다. 따라서 이 알고리즘은 고속도로뿐만 아니라 통행량 예측이 필요한 다양한 분야에서 활용할 수 있는 새로운 알고리즘이다.

최소자승법을 이용한 준설토 문제의 System Identification (System Identification on Dredged Soil Problems using Least Square Method)

  • 유남재;박병수;김영길;이명욱
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.127-133
    • /
    • 1999
  • This paper is a research about system identification which optimizes uncertain geothechnical properties from the data measured during geotechnical design and construction. Various numerical optimization algorithms of Simplex method, Powell method, Rosenbrock method and Levenberg-Marquardt method were applied to the excavation problem to determine which method showed the best results with respect to robustness of success in finding an optimal solution to within a certain accuracy and number of function evaluations. From the results of numerical analysis, all of four algorithms are converged to exact solution after satisfying the allowed criteria, and Levenberg-Marquardt's algorithms was identified to be the most efficient method in number of function evaluations. System identification was applied to geotechnical engineering problems, possibly being occurred in field, to verify its applicability : estimation of settlement due to self-weight consolidation in dredged and filled soil. For self-weight consolidational settlement of a dredged soil, a program of evaluating the constitutive relationship of effective stress-void ratio-permeability was developed by using the technique of system identification. Thus, consolidational characteristics of a dredged soil, having a very high initial void ratio, can be evaluated.

  • PDF

신형회로망을 이용한 비젼기반 자율주행차량의 횡방향제어 (Lateral Control of Vision-Based Autonomous Vehicle using Neural Network)

  • 김영주;이경백;김영배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.687-690
    • /
    • 2000
  • Lately, many studies have been progressed for the protection human's lives and property as holding in check accidents happened by human's carelessness or mistakes. One part of these is the development of an autonomouse vehicle. General control method of vision-based autonomous vehicle system is to determine the navigation direction by analyzing lane images from a camera, and to navigate using proper control algorithm. In this paper, characteristic points are abstracted from lane images using lane recognition algorithm with sobel operator. And then the vehicle is controlled using two proposed auto-steering algorithms. Two steering control algorithms are introduced in this paper. First method is to use the geometric relation of a camera. After transforming from an image coordinate to a vehicle coordinate, a steering angle is calculated using Ackermann angle. Second one is using a neural network algorithm. It doesn't need to use the geometric relation of a camera and is easy to apply a steering algorithm. In addition, It is a nearest algorithm for the driving style of human driver. Proposed controller is a multilayer neural network using Levenberg-Marquardt backpropagation learning algorithm which was estimated much better than other methods, i.e. Conjugate Gradient or Gradient Decent ones.

  • PDF

The RTD Measurement on a Submerged Bio-Reactor using a Radioisotope Tracer and the RTD Analysis

  • Seungkwon Shin;Kim, Jongbum;Sunghee Jung;Joonha Jin
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권2호
    • /
    • pp.210-214
    • /
    • 2003
  • This paper presents a residence time distribution (RTD) measurement method using a radioisotope tracer and the estimation method of RTD model parameters to analyze a submerged bio-reactor. The mathematical RTD models have been investigated to represent the flow behavior and the existence of stagnant regions in the reactor. Knowing the parameters of the RTD model is important for understanding the mixing characteristics of a reactor The radioisotope tracer experiment was carried out by injecting a radioisotope tracer as a pulse into the inlet of the reactor and recording the change of its concentration at the outlet of the reactor to obtain the experimental RTD response. The parameter estimation was performed by the Levenberg-Marquardt optimization algorithm. The proposed scheme allowed the parameter estimation of RTD model suggested by Adler-Hovorka with very low deviations. The estimation procedure is shown to lead to accurate estimation of the RTD parameters and to a good agreement between experimental and simulated response.

Two Layer Multiquadric-Biharmonic Artificial Neural Network for Area Quasigeoid Surface Approximation with GPS-Levelling Data

  • Deng, Xingsheng;Wang, Xinzhou
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.101-106
    • /
    • 2006
  • The geoidal undulations are needed for determining the orthometric heights from the Global Positioning System GPS-derived ellipsoidal heights. There are several methods for geoidal undulation determination. The paper presents a method employing a simple architecture Two Layer Multiquadric-Biharmonic Artificial Neural Network (TLMB-ANN) to approximate an area of 4200 square kilometres quasigeoid surface with GPS-levelling data. Hardy’s Multiquadric-Biharmonic functions is used as the hidden layer neurons’ activation function and Levenberg-Marquardt algorithm is used to train the artificial neural network. In numerical examples five surfaces were compared: the gravimetric geometry hybrid quasigeoid, Support Vector Machine (SVM) model, Hybrid Fuzzy Neural Network (HFNN) model, Traditional Three Layer Artificial Neural Network (ANN) with tanh activation function and TLMB-ANN surface approximation. The effectiveness of TLMB-ANN surface approximation depends on the number of control points. If the number of well-distributed control points is sufficiently large, the results are similar with those obtained by gravity and geometry hybrid method. Importantly, TLMB-ANN surface approximation model possesses good extrapolation performance with high precision.

  • PDF

단상 Cascaded H-Bridge 인버터의 출력 전압 품질 향상을 위한 선택적 고조파 제거 변조 기법 개발 (Development of Selective Harmonic Elimination PWM technique for voltage quality improvement of a single phase Cascaded H-Bridge inverter)

  • 이복원;이재석
    • 전기전자학회논문지
    • /
    • 제28권3호
    • /
    • pp.432-439
    • /
    • 2024
  • 본 논문은 재생배터리 에너지저장장치의 신뢰성과 전력품질 향상시키기 위해 개선된 단상 캐스케이드 H-브리지 기반 다중레벨 인버터의 선택적 고조파 제거 기법을 제안한다. 푸리에 급수에서 유도된 비선형 초월 방정식을 오프라인으로 풀어 선택적 고조파 제거 펄스 폭 변조 기법의 구현을 위한 최적의 스위칭 각도를 결정하며, 동작 중에 이 각도는 룩업 테이블을 통해 적용된다. 반복법인 Levenberg-Marquardt 알고리즘을 MATLAB에서 사용하여 방정식을 풀고 스위칭 각도를 얻었다. PLECS 시뮬레이션 소프트웨어를 통해 다중레벨 인버터에 사용되는 다른 기존의 펄스 폭 변조 기법들과 비교를 진행했으며, 제안된 방법의 유효성을 검증했다.