• Title/Summary/Keyword: Leveling aggregate

Search Result 4, Processing Time 0.022 seconds

Discrete element analysis for design modification of leveling blade on motor grader vehicle (모터 그레이더 평탄작업용 블레이드의 설계개선을 위한 개별요소법 해석)

  • Song, Chang-Heon;Oh, Joo-Young;Cho, Jung-Woo;Kim, Mun-Gyu;Seok, Jeong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.423-438
    • /
    • 2021
  • The blade of motor grader is used for scattering and leveling the aggregates on the foundation of road construction site. The paper performed a design improvement research of the blade part to enhance the working efficiency of motor graders. The scattering works of aggregates by blade driving were simulated by DEM (discrete element method) of a dynamic code. The four design parameters were selected and a specific leveling scenario for the simulation was determined. The nine blade models were numerically experimented, and the sensitivity of each factors was analyzed. Next, the design factors that influence a blade performance have been selected by ANOVA, and these key design factors were applied to the progressive quadratic response surface method (PQRSM). The optimum set of design factors of the blade was finally proposed.

A Study on the Mix Design of Antiwashout Underwater Concrete According to Compressive Strength (압축강도에 따른 수중불분리 콘크리트의 배합설계에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.91-97
    • /
    • 2003
  • At present, the antiwashout underwater concretes are used as popular construction materials in European countries, the United States and Japan. The water-soluble polymers in the antiwashout underwater concretes provide excellent segregation or washout resistance, self-compaction and self-leveling property to the concretes. The purpose of this study is to recommend to optimum mix proportions of antiwashout underwater concretes according to compressive strength of 300kgf/$\textrm{cm}^2$ to 500kgf/$\textrm{cm}^2$. The antiwashout underwater concretes are prepared with various unit cement content, unit water content, sand-aggregate ratio, unit antiwashout agent and superplasticizer content. And they are tested for flowability, and compressive strength. From the test results, it is possible to recommend the optimum mix proportions of antiwashout underwater concretes according to compressive strengths within the range of 300kgf/$\textrm{cm}^2$ to 500kgf/$\textrm{cm}^2$.

Changes in Soil Properties and Some Problems Induced by Leveling of Paddy Land in Yeongnam Area (경지정리(耕地整理) 답토양의 특성변화 조사(調査))

  • No, Young-Pal;Jung, Yeun-Tae;Park, Chang-Young;Park, Rae-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.2
    • /
    • pp.119-125
    • /
    • 1983
  • To find out problems and changing soil properties induced by leveling of paddy, a field survey was carried out with questionares to farmers of 68 project areas (990 farmers). The soil characteristics between natural soils and cut out sites was compared with soil samples taken from 37 project areas. More than 70 percents of farmers answered to the questionares expressed satisfaction on the paddy land leveling project; however, some farmers replied dissatisfaction that the arable land was decreased the soil productivity due to loss of surface soil or insufficient surface leveling, that the government support was insufficient and that transplanting of rice might be delayed due to retardation of the project. 1. The rate of cut out soils during the land leveling on plain terrain was about 15.3%, but the rates on gently sloped terrain (2-7% slopes) and sloped terrain (7-15% slopes) were relatively high showing 25.9% and 45%, respectively. 2. The deterioration of physical properties was clear in cut out site where the hardness and bulk density increased and the porosity and the rate of water stable aggregate decreased. 3. The degree of deterioration of physical properties on the Diluvial terrace was more severe than on plains or sloped alluvial fans and valleys. The decrease of available phosphorous and the content of organic matter in the cut out place due to land leveling were prominent. 4. The rice yield from cut site was decreased by 28% comparing with that from natural soils.

  • PDF

Adhesive Strength in Tension of High Volume PAE-Modified Cement Mortar with High Flowability for Floor Finishing

  • Do, Jeong-Yun;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.739-746
    • /
    • 2003
  • Various researches on the application of polymer dispersions to the cement mortar and concrete have been carried out in many countries like America, Japan and Germany and so on due to their high performance and good modification effect. PAE of polymer dispersion widely used in situ was employed that the high flowability may be induced in the cement mortar. In order to investigate the modification of cement mortar with high flowability by PAE and fracture mode of adhesive strength properties in tension of that, experimental parameters were set as PAE solid-cement ratio(P/C) and cement: fine aggregate(C:F) and the experiments such as unit weight, flow, consistency change, crack resistance and segregation that inform on the general properties have been done. Adhesion in tension is measured with a view to comprehending the properties and fracture mode in tensile load. Consistency change of cement mortar modified by PAE did grow better as the ratio of PAE solid-cement increased and was much superior to that of resin based flooring such as polyurethane and epoxy which recorded the loss of consistency in 90 min. after mixing. Adhesive strength in tension increased with continuity during curing period and showed the maximum in case of C:F=1:1 and P/C=20%.