• Title/Summary/Keyword: Level-set approach

Search Result 461, Processing Time 0.026 seconds

Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner (저 스월 버너에서의 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.455-458
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially- injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flame let model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

Level Set Advection of Free Fluid Surface Modified by Surface Tension

  • Pineda, Israel;Gwun, Oubong
    • Smart Media Journal
    • /
    • v.4 no.2
    • /
    • pp.9-16
    • /
    • 2015
  • Fluids appear in innumerable phenomena; therefore, it is interesting to reproduce those phenomena by computer graphics techniques. However, this process is not trivial. We work with a fluid simulation that uses Navier-Stokes equations to model the fluid, a semi-Lagrangian approach to solve it and the level set method to track the surface of the fluid. Modified versions of the Navier-Stokes equations for computer graphics allow us to create a wide diversity of effects. In this paper, we propose a technique that allows us to integrate a force inspired by surface tension into the model. We describe which information we need and how to modify the model with this new approach. We end up with a modified simulation that has additional effects that might be suitable for computer graphics purposes. The effects that we are able to recreate are small waves and droplet-like formations close to the surface of the fluid. This model preserves the overall behavior governed by the Navier-Stokes equations.

The smooth topology optimization for bi-dimensional functionally graded structures using level set-based radial basis functions

  • Wonsik Jung;Thanh T. Banh;Nam G. Luu;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.569-585
    • /
    • 2023
  • This paper proposes an efficient approach for the structural topology optimization of bi-directional functionally graded structures by incorporating popular radial basis functions (RBFs) into an implicit level set (ILS) method. Compared to traditional element density-based methods, a level set (LS) description of material boundaries produces a smoother boundary description of the design. The paper develops RBF implicit modeling with multiquadric (MQ) splines, thin-plate spline (TPS), exponential spline (ES), and Gaussians (GS) to define the ILS function with high accuracy and smoothness. The optimization problem is formulated by considering RBF-based nodal densities as design variables and minimizing the compliance objective function. A LS-RBF optimization method is proposed to transform a Hamilton-Jacobi partial differential equation (PDE) into a system of coupled non-linear ordinary differential equations (ODEs) over the entire design domain using a collocation formulation of the method of lines design variables. The paper presents detailed mathematical expressions for BiDFG beams topology optimization with two different material models: continuum functionally graded (CFG) and mechanical functionally graded (MFG). Several numerical examples are presented to verify the method's efficiency, reliability, and success in accuracy, convergence speed, and insensitivity to initial designs in the topology optimization of two-dimensional (2D) structures. Overall, the paper presents a novel and efficient approach to topology optimization that can handle bi-directional functionally graded structures with complex geometries.

FLUID SIMULATION METHODS FOR COMPUTER GRAPHICS SPECIAL EFFECTS (컴퓨터 그래픽스 특수효과를 위한 유체시뮬레이션 기법들)

  • Jung, Moon-Ryul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.1-1
    • /
    • 2009
  • In this presentation, I talk about various fluid simulation methods that have been developed for computer graphics special effects since 1996. They are all based on CFD but sacrifice physical reality for visual plausability and time. But as the speed of computer increases rapidly and the capability of GPU (graphics processing unit) improves, methods for more physical realism have been tried. In this talk, I will focus on four aspects of fluid simulation methods for computer graphics: (1) particle level-set methods, (2) particle-based simulation, (3) methods for exact satisfaction of incompressibility constraint, and (4) GPU-based simulation. (1) Particle level-set methods evolve the surface of fluid by means of the zero-level set and a band of massless marker particles on both sides of it. The evolution of the zero-level set captures the surface in an approximate manner and the evolution of marker particles captures the fine details of the surface, and the zero-level set is modified based on the particle positions in each step of evolution. (2) Recently the particle-based Lagrangian approach to fluid simulation gains some popularity, because it automatically respects mass conservation and the difficulty of tracking the surface geometry has been somewhat addressed. (3) Until recently fluid simulation algorithm was dominated by approximate fractional step methods. They split the Navier-Stoke equation into two, so that the first one solves the equation without considering the incompressibility constraint and the second finds the pressure which satisfies the constraint. In this approach, the first step introduces error inevitably, producing numerical diffusion in solution. But recently exact fractional step methods without error have been developed by fluid mechanics scholars), and another method was introduced which satisfies the incompressibility constraint by formulating fluid in terms of vorticity field rather than velocity field (by computer graphics scholars). (4) Finally, I want to mention GPU implementation of fluid simulation, which takes advantage of the fact that discrete fluid equations can be solved in parallel.

  • PDF

Numerical Study on the Stabilization of Turbulent Swirling Lifted Premixed Syngas Flames (석탄가스 난류선회유동 예혼합부상화염의 안정성 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.349-352
    • /
    • 2008
  • This study has numerically modeled the combustion processes of the turbulent swirling premixed lifted syngas flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role of stabilizing the turbulent lifted flames. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Numerical results indicate clearly that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling premixed lifted flames in the low-swirl burner. Computations are made for the wide range of the syngas chemical composition and the dilution level at two pressure conditions (1.0, 5.0 bar). Numerical results indicate that the lifted height in the LSB is increased by decreasing the H2 percentage and increasing the dilution level at the given equivalence ratio. It is also found that the flashback is occurred for the hydrogen composition higher than 80% at the equivalence ratio, 0.8. However, at the syngas composition range in the IGCC system, the stable lean-premixed lifted flames are formed at the low-swirl burner.

  • PDF

Segmentation of Neuronal Axons in Brainbow Images

  • Kim, Tae-Yun;Kang, Mi-Sun;Kim, Myoung-Hee;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1417-1429
    • /
    • 2012
  • In neuroscientific research, image segmentation is one of the most important processes. The morphology of axons plays an important role for researchers seeking to understand axonal functions and connectivity. In this study, we evaluated the level set segmentation method for neuronal axons in a Brainbow confocal microscopy image. We first obtained a reconstructed image on an x-z plane. Then, for preprocessing, we also applied two methods: anisotropic diffusion filtering and bilateral filtering. Finally, we performed image segmentation using the level set method with three different approaches. The accuracy of segmentation for each case was evaluated in diverse ways. In our experiment, the combination of bilateral filtering with the level set method provided the best result. Consequently, we confirmed reasonable results with our approach; we believe that our method has great potential if successfully combined with other research findings.

Numerical Modeling for Turbulent Premixed Flames (난류 예혼합 화염장에 대한 수치 모델링)

  • Kang, Sung-Mo;Kim, Yomg-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.198-203
    • /
    • 2005
  • The LES-based level-set flamelet model has been applied to analyze the turbulent propane/air premixed bluff-body flame with a highly wrinkled flame fronts. The present study has been motivated to investigate the interaction between the flame front and turbulent eddies. Special emphasis is given to study the effect of G equation filtering treatment on the precise structure of turbulent premixed flames as well as the effect of sub-grid scale (SGS) eddies on the wrinkling of the flame surface. The level-set/flamelet model has been adopted to account for the effect of turbulence-flame interaction as well as to properly capture the flame front. Numerical results indicate that the present LES-based level-set flamelet approach has a capability to realistically simulate the highly non-stationary turbulent premixed flame.

  • PDF

NUMERICAL MODELING FOR FLAME STABILIZATION OF GAS TURBINE COMBUSTOR (가스터빈 엔진의 화염안정성에 대한 수치모델링)

  • Kang Sungmo;Kim Yongmo;Chung Jae-Hwa;Ahn Dal-Hong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.201-206
    • /
    • 2005
  • In order to realistically represent the complex turbulence-chemistry interaction at the partially premixed turbulent lifted flames encountered in the gas turbine combustors, the combined conserved-scalar/level-set flamelet approach has been adopted. The parallel unstructured-grid finite-volume method has been developed to maintain the geometric flexibility and computational efficiency for the solution of the physically and geometrically complex flows. Special emphasis is given to the swirl effects on the combustion characteristics of the lean-premixed gas turbine combustor. Numerical results suggest that the present approach is capable of realistically simulating the combustion characteristics for the lean-premixed gas turbine engines and the lifted turbulent jet flame with a vitiated coflow.

  • PDF

An ICF-Core Sets for Children and Youth With Cerebral Palsy Based Approach From a Physical Therapist Perspective: A Single Case Study (물리치료사의 관점에서 뇌성마비 아동과 청소년을 위한 ICF-Core Set을 기반으로 한 접근법의 효과: 단일 사례 연구)

  • Kim, Jeong-hui;Kim, Tae-ho
    • Physical Therapy Korea
    • /
    • v.23 no.1
    • /
    • pp.55-64
    • /
    • 2016
  • Background: The International Classification of Functioning, Disability, and Health-core set (ICF-core set) for children and youth (CY) with cerebral palsy (CP) provides a useful conceptual framework and a guide for health care planning and measuring the changes brought by interventions across a multitude of dimensions from body functions to personal activities, social participation, and environmental factors for them. Objects: This single case study was reported to illustrate the use of a goal directed approach in applying the ICF-core set for CY with CP from a physical therapist perspective. Methods: An eleven year old boy with spastic CP, Gross Motor Function Classification System (GMFCS) level V, and his mother participated in an evaluation of his functioning state. The intervention goal was set through an interview using the ICF-core set, Canadian Occupational Performance Measure (COPM) and Goal Attainment Scale (GAS). Physical therapy was carried out on an outpatient basis using a goal directed approach for 30 min, 1 time/week during 12 weeks and the boy's gross motor function was assessed using the Gross Motor Function Measure (GMFM)-66 version (item set 2) before and after the intervention. Results: As measured by the boy's mother, the COPM score showed a meaningful clinical change (performance=mean 3.5, satisfaction=mean 2.5) and the T-score of GAS changed 34.4 after the goal directed approach. The GMFM-66 (item set 2) score changed from 31.8 to 38.7 and evaluation using the ICF-core set displayed improvement in 6 items of activity level between before and after the intervention. Conclusion: The ICF-core set for CY with CP is useful for understanding the overall functioning of CY with this condition and provides an opportunity to share and integrate information and opinions from different disciplines. We consider it as a useful tool in the universal language for the therapy and education of CY with CP.