• Title/Summary/Keyword: Level Sensor

Search Result 1,647, Processing Time 0.025 seconds

Liquid level measurement system using capacitive sensor and optical sensor

  • Shim, Joonhwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.778-783
    • /
    • 2013
  • Measurement of liquid level in storage and processing vessels, tanks, wells, reservoirs and hoppers is commonly needed. The several different ways to measure the liquid level of oil or water tank have been provided such as an electrostatic capacity, a supersonic waves and an optical science etc. In the study, we have constructed the stable and efficient measurement system to measure the level of liquid at real-time and to get accurate measurement of the maximum and minimum level of the tank. For this purpose, we suggest double sensing methods by adopting both capacitive and optical sensing. The experimental results, presented in this paper, illustrate the effectiveness of the proposed method under different sensing methods.

Anomaly detection in particulate matter sensor using hypothesis pruning generative adversarial network

  • Park, YeongHyeon;Park, Won Seok;Kim, Yeong Beom
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.511-523
    • /
    • 2021
  • The World Health Organization provides guidelines for managing the particulate matter (PM) level because a higher PM level represents a threat to human health. To manage the PM level, a procedure for measuring the PM value is first needed. We use a PM sensor that collects the PM level by laser-based light scattering (LLS) method because it is more cost effective than a beta attenuation monitor-based sensor or tapered element oscillating microbalance-based sensor. However, an LLS-based sensor has a higher probability of malfunctioning than the higher cost sensors. In this paper, we regard the overall malfunctioning, including strange value collection or missing collection data as anomalies, and we aim to detect anomalies for the maintenance of PM measuring sensors. We propose a novel architecture for solving the above aim that we call the hypothesis pruning generative adversarial network (HP-GAN). Through comparative experiments, we achieve AUROC and AUPRC values of 0.948 and 0.967, respectively, in the detection of anomalies in LLS-based PM measuring sensors. We conclude that our HP-GAN is a cutting-edge model for anomaly detection.

Uncooled Microbolometer FPA Sensor with Wafer-Level Vacuum Packaging (웨이퍼 레벨 진공 패키징 비냉각형 마이크로볼로미터 열화상 센서 개발)

  • Ahn, Misook;Han, Yong-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.300-305
    • /
    • 2018
  • The uncooled microbolometer thermal sensor for low cost and mass volume was designed to target the new infrared market that includes smart device, automotive, energy management, and so on. The microbolometer sensor features 80x60 pixels low-resolution format and enables the use of wafer-level vacuum packaging (WLVP) technology. Read-out IC (ROIC) implements infrared signal detection and offset correction for fixed pattern noise (FPN) using an internal digital to analog convertor (DAC) value control function. A reliable WLVP thermal sensor was obtained with the design of lid wafer, the formation of Au80%wtSn20% eutectic solder, outgassing control and wafer to wafer bonding condition. The measurement of thermal conductance enables us to inspect the internal atmosphere condition of WLVP microbolometer sensor. The difference between the measurement value and design one is $3.6{\times}10-9$ [W/K] which indicates that thermal loss is mainly on account of floating legs. The mean time to failure (MTTF) of a WLVP thermal sensor is estimated to be about 10.2 years with a confidence level of 95 %. Reliability tests such as high temperature/low temperature, bump, vibration, etc. were also conducted. Devices were found to work properly after accelerated stress tests. A thermal camera with visible camera was developed. The thermal camera is available for non-contact temperature measurement providing an image that merged the thermal image and the visible image.

A Cantilever Type Contact Force Sensor Array for Blood Pressure Measurement (혈압 측정을 위한 외팔보형 접촉힘 센서 어레이)

  • Lee, Byeung-Leul;Jung, Jin-Woo;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • Piezoresistive type contact force sensor array is fabricated by (111) Silicon bulk micromachining for continuous blood pressure monitoring. Length and width of the unit sensor structure is $200{\mu}m$ and $190{\mu}m$, respectively. The gap between sensing elements is only $10{\mu}m$. To achieve wafer level packaging, the sensor structure is capped by PDMS soft cap using wafer molding and bonding process with $10{\mu}m$ alignment precision. The resistance change over contact force was measured to verify the feasibility of the proposed sensor scheme. The maximum measurement range and resolution is 900 mm Hg and 0.57 mm Hg, respectively.

Development of experimental water level measuring device using an Arduino and an ultrasonic sensor (아두이노와 초음파 센서를 이용한 실험용 수위 측정 장치 개발)

  • Yoo, Moonsung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.143-147
    • /
    • 2018
  • Water levels are measured in various fields such as sewage treatment plants, water treatment plants, rivers, dams, factory storages' tanks. Ultrasonic instruments for water level measurement are expensive and are used for industrial field. Rapid advances in electronics have made it possible to build a wide variety of measurement, monitoring and control functions at low cost. This study was started to make ultrasonic level measurement system at low price. The system was constructed with an Arduino, an ultrasonic sensor and a temperature sensor for use in the experiment. The ultrasonic sensor measures the time from the sensor to the liquid surface. The temperature sensor measures the atmospheric temperature and improves the accuracy of the ultrasonic distance measurement by correcting the sound speed. Arduino controls measurements and calculates the water level. All components of the system are assembled into a device holder. Experiments with this system show that the water level measured by the system is very close to the actual value. This system is also inexpensive and easy to install and maintain, making it suitable for laboratory use.

A Study of the Circuit for CPS Signal Using Magnetic Pickup (마그네틱 픽업 방식의 CPS 신호 해석 회로에 관한 연구)

  • Ju, Yong-Wan;Cho, Bong-Su;Baek, Kwang-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • The basic signals for electronic engine control are velocity and degree of the engine cam shaft. The CPS sensor used for this signal and magnetic pick-up type CPS sensor is more popular. It is very important thing analyze this signal correctly. If there are some mistakes at the analysis, like a noise, The engine do not working at the best status, it will generate some noise, emit exhaust fumes and waste more gases. In general way to analysis this signal, you use zero-level detector circuit and in order to reduce the error you must use another sensor like a TDC sensor. In this paper, We proposed the analysis method using electronics circuits for magnetic pick-up type CPS sensor. We designed Comparison level detector circuit, Differential circuit and Full-rectifier circuit for detected the Long tooth and Short tooth level correctly without another sensor. We expected it is useful for more reliable engine control.

Highly Sensitive Partial Discharge Sensor with Remote Monitoring Capabilities (원격감시 기능을 갖는 고감도 부분방전센서)

  • Choi, Kyoo-Nam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.3
    • /
    • pp.349-356
    • /
    • 2015
  • Remote monitoring partial discharge sensor, equipping with hybrid filter combining optical and electrical noise reduction capabilities and with signal integrating function to calculate total arc energy, was investigated. Hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal integrating function showed selective detection capability corresponding to different arc energy levels, while convention arc sensor had difficulty to discriminate arc energy level due to bursty arc waveform and peak level detection characteristics. The sensor showed possibility for application to remote monitoring partial discharge sensor, since it detected arc energy level corresponding to normal open and close discharge in low voltage 100A MCCB at 2m distance.

Development of Ultrasonic Sediment-level Sensor for Sewage Pipe Application (하수관 퇴적물 감지를 위한 초음파 퇴적센서 개발)

  • Park, Buem-Keun;Shin, Jeong-Hee;Paik, Jong-Hoo;LEE, Young-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.25-29
    • /
    • 2021
  • In this study, we successfully developed a highly reliable ultrasonic sediment sensor to detect the sediment levels in sewer pipes in harsh environments. The ultrasonic transducer employed in the ultrasonic sediment sensor was designed so as to possess a simple structure. The developed sensor was carefully optimized by simulating the electromechanical characteristics, radiated sound wave pressures, and directivity via finite element analysis. It was also designed to possess a simple mounting structure minimizing the flow disturbance in a 400-mm sewer pipe; additionally, eight ultrasonic transducers were arranged in a four-channel mode, allowing for measurement of the sediment height in five easy steps. Through experimental evaluations, we verified the performance of the ultrasonic sediment-level sensor and its industrial applicability. The results suggested that although the precision value was notably low at 15 mm, the sediment detection performance was adequate; therefore, the developed sensor can potentially be used in industrial applications.

VALIDATION OF ON-LINE MONITORING TECHNIQUES TO NUCLEAR PLANT DATA

  • Garvey, Jamie;Garvey, Dustin;Seibert, Rebecca;Hines, J. Wesley
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.133-142
    • /
    • 2007
  • The Electric Power Research Institute (EPRI) demonstrated a method for monitoring the performance of instrument channels in Topical Report (TR) 104965, 'On-Line Monitoring of Instrument Channel Performance.' This paper presents the results of several models originally developed by EPRI to monitor three nuclear plant sensor sets: Pressurizer Level, Reactor Protection System (RPS) Loop A, and Reactor Coolant System (RCS) Loop A Steam Generator (SG) Level. The sensor sets investigated include one redundant sensor model and two non-redundant sensor models. Each model employs an Auto-Associative Kernel Regression (AAKR) model architecture to predict correct sensor behavior. Performance of each of the developed models is evaluated using four metrics: accuracy, auto-sensitivity, cross-sensitivity, and newly developed Error Uncertainty Limit Monitoring (EULM) detectability. The uncertainty estimate for each model is also calculated through two methods: analytic formulas and Monte Carlo estimation. The uncertainty estimates are verified by calculating confidence interval coverages to assure that 95% of the measured data fall within the confidence intervals. The model performance evaluation identified the Pressurizer Level model as acceptable for on-line monitoring (OLM) implementation. The other two models, RPS Loop A and RCS Loop A SG Level, highlight two common problems that occur in model development and evaluation, namely faulty data and poor signal selection

Comparison on Irrigation Management Methods by Integrated Solar Radiation and Drainage Level Sensor in Rockwool and Coir Bag Culture for Tomato (토마토의 암면과 코이어 자루재배시 일사량제어법과 배액전극제어법에 의한 급액제어 방법 비교)

  • Kim, Sung-Eun;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.12-18
    • /
    • 2010
  • Irrigation management methods controlled by integrated solar radiation (ISR) or drainage level sensor were evaluated in rockwool or coir bag culture as tomato (Solanum lycopersicum L.) production system. Substrate water content and drainage percentage were more stable in the drainage level sensor method than in the ISR method regardless of substrate type. Total yield and marketable yield were high in the drainage level sensor method, but not between substrates in the same irrigation management method. Sugar content was affected more by the substrate type than irrigation method. The drainage level sensor method was elucidated to be better than the ISR method regardless of substrate type.