• Title/Summary/Keyword: Level Sensor

Search Result 1,655, Processing Time 0.029 seconds

Failure Case Studies of Sensors for Electronic Controlled Engine in LPG Vehicle (LPG 자동차에서 전자제어엔진용 센서의 고장사례에 관한 연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.56-62
    • /
    • 2010
  • The purpose of this paper analyzes and investigates the failure case studies of electronic control sensors for a LP gas engine. The malfunction of crank angle sensor, which controls a fuel injection volume of LP gas, displays an irregular and non-uniform pulse wave form. The pulse form, which is related to the noise of the crank angle sensor, displays at the rectangular peak with a saw-toothed shape and is intermittently generated with a level of 2.46V noise signal. The malfunction of No. 1 TDC sensor in which is caused from the internal disorder affects to the reduction of engine power and engine stop suddenly. If the malfunction of oxygen sensor is occurred due to a wiring problem of a sensor connector, the LP gas vehicle may produce a shaking and disharmony of an engine because of no signal supply from the oxygen sensor. The air cleaner replica produces the clogging of continuous supply of fresh air. This may cause the retardation of vehicle acceleration and engine disharmony intermittently.

Robust Real-time Control of Autonomous Mobile Robot Based on Ultrasonic and Infrared sensors (초음파 및 적외선 센서 기반 자율 이동 로봇의 견실한 실시간 제어)

  • Nguyen, Van-Quyet;Han, Sung-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.145-155
    • /
    • 2010
  • This paper presents a new approach to obstacle avoidance for mobile robot in unknown or partially unknown environments. The method combines two navigation subsystems: low level and high level. The low level subsystem takes part in the control of linear, angular velocities using a multivariable PI controller, and the nonlinear position control. The high level subsystem uses ultrasonic and IR sensors to detect the unknown obstacle include static and dynamic obstacle. This approach provides both obstacle avoidance and target-following behaviors and uses only the local information for decision making for the next action. Also, we propose a new algorithm for the identification and solution of the local minima situation during the robot's traversal using the set of fuzzy rules. The system has been successfully demonstrated by simulations and experiments.

Fundamental Research on the Measurement and Control System of Level Sensor for Launch Vehicle Propellant Tanks (발사체 추진제 탱크 수위 측정 및 제어 시스템 기초연구)

  • Shin, Dong-Sun;Han, Sang-Yeop;Cho, In-Hyun;Lee, Eung-Shin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.393-396
    • /
    • 2008
  • Propellant consumption control for space launch vehicle can be achieved by propellant utilization system (PUS) and tank depletion system (TDS). In the course of developing new space launch vehicles, the main target of design is on reducing of space launch vehicle weight, which results in increasing both specific impulse and payload weight. The weights of space launch vehicles are generally allocated to structure, propulsion system, and propellants loaded. The quantity of propellants filled in propellant tanks may be estimated with the propellants actually consumed by propulsion system to complete its mission and the propellants left on-board at the time of engine shut-off. To minimize the remaining quantity of propellants on-board the supplying propellants' O/F ratio should be controlled from the certain time before engine shutdown. To control an O/F ratio, a control system, which accurately measures and compares the remainder of propellants in tanks and pipes, should be needed. This paper solely dedicates its contents to explore the merits and demerits of various level sensor, which is one of the important elements for PUS and TDS, and the transmission and control of signals within space launch vehicle.

  • PDF

Visual Sensing of Fires Using Color and Dynamic Features (컬러와 동적 특징을 이용한 화재의 시각적 감지)

  • Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.211-216
    • /
    • 2012
  • Fires are the most common disaster and early fire detection is of great importance to minimize the consequent damage. Simple sensors including smoke detectors are widely used for the purpose but they are able to sense fires only at close proximity. Recently, due to the rapid advances of relevant technologies, vision-based fire sensing has attracted growing attention. In this paper, a novel visual sensing technique to automatically detect fire is presented. The proposed technique consists of multiple steps of image processing: pixel-level, block-level, and frame level. At the first step, fire flame pixel candidates are selected based on their color values in YIQ space from the image of a camera which is installed as a vision sensor at a fire scene. At the second step, the dynamic parts of flames are extracted by comparing two consecutive images. These parts are then represented in regularly divided image blocks to reduce pixel-level detection error and simplify following processing. Finally, the temporal change of the detected blocks is analyzed to confirm the spread of fire. The proposed technique was tested using real fire images and it worked quite reliably.

Vibration Analysis of an Cantilever Beam in Partially Liquid-Filled Cylindrical Pipe (부분적으로 유체가 채워진 원통형 관내의 외팔보 진동해석)

  • 권대규;유계형;방두열;이성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1073-1078
    • /
    • 2003
  • This paper presents the vibration characteristics of a cantilever beam in contact with a fluid using a PZT actuator and PVDF film. dynamic behaviors of a flexible beam-water interaction system are examined. The effect of the liquid level on free vibration of the composite beam in a partially liquid-filled circular cylinder is investigated. The coupled system is subject to an undisturbed boundary condition un the fluid domain. In the vibration analysis of a wetted beam. the decoupled analyses between beam and fluid have been conventionally employed by considering first the composite beam vibration in the all and secondly Performing the correction taking account for surrounding fluid effects. That is, this investigation was to look at how natural frequencies, mode shapes. and damping are affected by liquid level variations. The signals from the sensor according to the applied input voltage are digitalized and filtered in order to obtain the dynamic characteristics of the composite beam in contact with fluid. It was found that the coupled natural frequencies decreased with the fluid level for the identical composite beam due to added mass effect. In case of the free-free boundary condition, the natural frequency gently decreased at fluid water level between 20% and 80% in the first tending mode and we found out the bends of stair shape for added mass effect of the fluid.

  • PDF

Validation of the Atmospheric Infrared Sounder Water Vapor Retrievals Using Global Positioning System: Case Study in South Korea

  • Won, Ji-Hye;Park, Kwan-Dong;Kim, Du-Sik;Ha, Ji-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.291-298
    • /
    • 2011
  • The atmospheric infrared sounder (AIRS) sensor loaded on the Aqua satellite observes the global vertical structure of atmosphere and enables verification of the water vapor distribution over the entire area of South Korea. In this study, we performed a comparative analysis of the accuracy of the total precipitable water (TPW) provided as the AIRS level 2 standard retrieval product by Jet Propulsion Laboratory (JPL) over the South Korean area using the global positioning system (GPS) TPW data. The analysis TPW for the period of one year in 2008 showed that the accuracy of the data produced by the combination of the Advanced Microwave Sounding Unit sensor with the AIRS sensor to correct the effect of clouds (AIRS-X) was higher than that of the AIRS IR-only data (AIRS-I). The annual means of the root mean square error with reference to the GPS data were 5.2 kg/$m^2$ and 4.3 kg/$m^2$ for AIRS-I and AIRS-X, respectively. The accuracy of AIRS-X was higher in summer than in winter while measurement values of AIRS-I and AIRS-X were lower than those of GPS TPW to some extent.

Publish/Subscribe Protocol in Wireless Sensor Networks: Improved Reliability and Timeliness

  • Davis, Ernesto Garcia;Auge, Anna Calveras
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1527-1552
    • /
    • 2018
  • The rapidly-evolving demand of applications using wireless sensor networks in several areas such as building and industrial automation or smart cities, among other, makes it necessary to determine and provide QoS support mechanisms which can satisfy the requirements of applications. In this paper we propose a mechanism that establishes different QoS levels, based on Publish/Subscribe model for wireless networks to meet application requirements, to provide reliable delivery of packet and timeliness. The first level delivers packets in a best effort way. The second one intends to provide reliable packet delivery with a novel approach for Retransmission Timeout (RTO) calculation, which adjusts the RTO depending on the subscriber Packet Delivery Ratio (PDR). The third one provides the same reliable packet delivery as the second one, but in addition, it provides data aggregation trying to be efficient in terms of energy consumption and the use of network bandwidth. The last one provides timeliness in the packet delivery. We evaluate each QoS Level with several performance metrics such as PDR, Message Delivery Ratio, Duplicated and Retransmitted Packet Ratio and Packet Timeliness Ratio to demonstrate that our proposal provides significant improvements based on the increase of the PDR obtained.

Fabrication of Micro-Vacuum Sensor using Surface-Macromachined Lateral-type Field Emitter Device (표면 미세 가공된 측면형 전계 방출 소자를 이용한 초소형 진공 센서의 제작)

  • Park, Heung-Woo;Ju, Byeong-Kwon;Lee, Yun-Hi;Park, Jung-Ho;Oh, Myung-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.182-189
    • /
    • 2000
  • A micro-vacuum sensor was fabricated for the measurement of the vacuum level in micro-space. The fact that the field emission current was dependent on the environmental vacuum level was employed as an operating principle. The fabricated lateral-type field emitter triode with a cathode, a gate and a anode separated by using the surface micromachining process showed the emission current variation in the range of $1.20{\sim}2.42\;{\mu}A$ for the vacuum range of $10^{-5}{\sim}10^{-8}\;Torr$.

  • PDF

Optimal Vibration Control of a Plate Using Optical Fiber Sensor and Piezoelectric Actuator (광섬유 센서와 압전 작동기를 이용한 평판의 최적 진동 제어)

  • Kim, Do-Hyung;Han, Jae-Hung;Yang, Seung-Man;Kim, Dae-Hyun;Lee, In;Kim, Chun-Gon;Hong, Chang-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.4
    • /
    • pp.294-301
    • /
    • 2002
  • Vibration control of a plate using an optical fiber sensor and a piezoelectric actuator is considered in the present study, An aluminum plate with attached Extrinsic Fabry-Perot Interferometer (EFPI) and piezoelectric actuator is prepared for experimental investigation. Vibration level of EFPI that can represent the mechanical strain without severe distortion Is validated by forced nitration experiment. A linear time invariant system model is constructed based on the experimentally obtained frequency responses, and an optimal controller is designed for the multi-modal vibration suppression. Control performance is presented in frequency and time domains. It is found that the nitration level of the first three modes can be greatly reduced. The effect of low-pass filtering used to eliminate high frequency noise on the stability and control performance is also considered.

Development of Multi-Sensor based River Monitoring Technology for River Flood Risk surveillance (하천 홍수 위험 감시를 위한 다중센서 기반 하천 관측 기술 개발)

  • Jang, Bong-Joo;Jung, In Taek
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.11
    • /
    • pp.1372-1382
    • /
    • 2020
  • This paper proposes a core technology for a micro river monitoring terminal device suitable for flood monitoring in small rivers and valleys. Our proposed device is basically equipped with a 77GHz radar, gyro and accelerometer sensors. To measure the flow velocity and water level, we proposed a signal processing technique that extracts pure water energy components from the observed Doppler velocity and reflection intensity from the radar. And to determine the stability of the river structure equipped with our device, we constantly monitor the displacement of the measured values of the gyro and accelerometer sensors. Experimental result verified that our method detects pure water energy in various river environments and distinguishes between flow velocity and water level well. And we verified that vibration and position change of structures can be determined through a gyro sensor. In future research, we will work to build a secure digital twin river network by lowering the cost of supplying RF-WAV devices. Also we expect our device to contribute to securing a preventive golden time in rivers.