• Title/Summary/Keyword: Level Sensor

Search Result 1,654, Processing Time 0.03 seconds

A Study on Non-destructive Stress Measurement of Steel Plate using a Magnetic Anisotropy Sensor (자기이방성센서를 이용한 강판의 비파괴 응력 계측에 관한 연구)

  • Kim, Daesung;Moon, Hongduk;Yoo, Jihyeung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.71-77
    • /
    • 2011
  • Recently, non-destructive stress measurement method using magnetic anisotropy sensor has been applied to the construction site such as steel bridges and steel pipes. In addition, steel rib used in the tunnel construction site was found to be possible to measure the stress by non-destructive method. In this study, steel loading experiments using magnetic anisotropy sensor developed in Japan and strain gauges were conducted to derive stress sensitivity curve for domestic steel SS400. Also, additional steel loading experiments and numerical analysis were performed for evaluation of applicability for non-destructive stress measurement method using magnetic anisotropy sensor. As a result of this study, stress sensitivity curves for domestic steel SS400 were derived using output voltage measured by magnetic anisotropy sensor and average of stress measured by strain gauges depending on the measurement location. And as a result of comparing additional steel loading experiments with the numerical analysis, error level of magnetic anisotropy sensor is around 20MPa. When considering the level of the yield stress(245MPa) of steel, in case of using magnetic anisotropy sensor in order to determine the stress status of steel, it has sufficient accuracy in engineering. Especially, magnetic anisotropy sensor can easily identify the current state of stress which considers residual stress at steel structure that stress measurement sensor is not installed, so we found that magnetic anisotropy sensor can be applied at maintenance of steel structure conveniently.

A key management scheme for the cluster-based sensor network using polar coordinated (극 좌표를 이용한 클러스터 기반 센서 네트워크의 키 관리 기법)

  • Hong, Seong-Sik;Ryou, Hwang-Bin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.870-878
    • /
    • 2008
  • The level of security of most sensor nodes that comprise the sensor networks is low, but because of the low computing power and small storage capacity, it is even very difficult to apply a security algorithm efficiently to the sensor nodes. Therefore, preventing the join of an illegal node to a sensor network is impossible, and the transmitting information is easily exposed and overheard when the transmitting algorithm of the sensor node is hewn. In this paper, we propose a group key management scheme for the sensor network using polar coordinates, so that the sensor nodes can deliver information securely inside a cluster and any illegal node is prevented from joining to the cluster where a sensor network is composed of many clusters. In the proposed scheme, all of the sensor nodes in a cluster set up the authentication keys based on the pivot value provided by the CH. The intensive simulations show that the proposed scheme outperforms the pair-wise scheme in terms of the secure key management and the prevention of the illegal nodes joining to the network.

An Efficient Key management for Wireless Sensor Network (무선센서 네트워크를 위한 효율적인 키 관리 연구)

  • Park, Sung-Kon
    • Journal of Digital Contents Society
    • /
    • v.13 no.1
    • /
    • pp.129-139
    • /
    • 2012
  • Recently, the smart sensor technologies are rapidly developing in accordance with the technology of implementation in small-size, low-cost, and low power consumption. With these sensor technologies, especially with MEMS and NEMS, the researches on the WSN are actively performing. For the WSN, a network security function is essential even it requires high physical resource level. But the WSN with the smart sensor technologies could not be provided with enough resources for the function because of limited size, computing-power, low-power, and etc. In this paper, we introduce security and key-management protocols of WSN.

Development of Vehicle Oriented Black Box System Based on U-Healthcare and Human-Free Guard Functions

  • Lee, Dong-Myung
    • Journal of Engineering Education Research
    • /
    • v.13 no.5
    • /
    • pp.36-40
    • /
    • 2010
  • The vehicle oriented block box system based on the u-healthcare and the human-free guard functions is developed in this paper. We also suggested the design philosophies, ideas, and analyzed the performance of the suggested system. The developed vehicle oriented black box system has some characteristics such as; 1) detects the dangerous situation by ultrasonic sensor in advance, and stores the situation information of the neighborhood of the vehicle to the imbedded SD memory card if the dangerous situation may be occurred in the parked vehicle; 2) detects the present location and speed information of the vehicle by GPS receiver and 3-axes acceleration sensor, and stores the information to the SD memory card periodically if the vehicle is running; 3) measures the dioxide carbon in the vehicle inside using $CO_2$ sensor, and forces the ventilation motor of the vehicle to operate and maintains the driver's health if the measured level is more than standard health requirements; 4) provides the stored vehicle's operating information to the driver by GUI (Graphical User Interface) based touch LCD monitor.

  • PDF

Building Efficient Multi-level Wireless Sensor Networks with Cluster-based Routing Protocol

  • Shwe, Hnin Yu;Kumar, Arun;Chong, Peter Han Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4272-4286
    • /
    • 2016
  • In resource constrained sensor networks, usage of efficient routing protocols can have significant impact on energy dissipation. To save energy, we propose an energy efficient routing protocol. In our approach, which integrates clustering and routing in sensor networks, we perform network coding during data routing in order to achieve additional power savings in the cluster head nodes. Efficacy of the proposed method in terms of the throughput and end-to-end delay is demonstrated through simulation results. Significant network lifetime is also achieved as compared with other techniques.

Optical Voltage Sensor Using $SiO_2$ Pockels Cell ($SiO_2$ 포켈 소자를 이용한 광전압센서)

  • Shin, K.H.;Chun, J.P.;Cho, H.K.;Kim, S.K.;Kim, Y.H.;Kim, Y.S.;Park, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.846-849
    • /
    • 1991
  • This paper reports the principle, system confiquration, test results of optical voltage sensor using quartz pockels cell. The Pockels effect of quartz material is used for designing optical voltage sensor. The quarts material has very high half-wave voltage, so, it can be applied to measure high voltage level. Experimental results show that the optical voltage sensor has excellent linear characteristics within the applied AC voltage of 1200V.

  • PDF

Application and testing of a triple bubbler sensor in molten salts

  • Williams, A.N.;Shigrekar, A.;Galbreth, G.G.;Sanders, J.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1452-1461
    • /
    • 2020
  • A triple bubbler sensor was tested in LiCl-KCl molten salt from 450 to 525 ℃ in a transparent furnace to validate thermal-expansion corrections and provide additional molten salt data sets for calibration and validation of the sensor. In addition to these tests, a model was identified and further developed to accurately determine the density, surface tension, and depth from the measured bubble pressures. A unique feature of the model is that calibration constants can be estimated using independent depth measurements, which allow calibration and validation of the sensor in an electrorefiner where the salt density and surface tension are largely unknown. This model and approach were tested using the current and previous triple bubbler data sets, and results indicate that accuracies are as high as 0.03%, 4.6%, and 0.15% for density, surface tension, and depth, respectively.

A Study on Tool Monitoring for High Speed Tapping using AE Signal (AE센서를 이용한 고속 탭핑용 공구 모니터링에 관한 연구)

  • 김용규;이돈진;김선호;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.315-318
    • /
    • 1997
  • In terms of productivity, the speed of machining process has been increasing in most of engineering part. But the tapping process does not reach at enough level compared with other machining processes because of its complicate cutting mechanism. In the high speed tapping process, the one of important elements is tool monitoring system to prevent tool breakage. This paper describes tool monitoring system by acoustic emission(AE) in the tapping process. We used 2 types of AE sensors in this test. The one is commercial sensor which is used in other machining monitoring system like polishing and the other is a self-fabricated sensor for this test. In this test we purpose to find out the frequency of AE signal in tapping process and verify the possibility of applying AE sensor in in-process tapping monitoring system. Also grasp of characteristic of tapping process by AE signal is handled.

  • PDF

A Study on the Method for Improving the Localization Accuracy using the Magnetic Sensors (자기센서를 이용한 위치추정 정밀도 향상 방안에 관한 연구)

  • Kim, Jungtai;Kim, Moo Sun;Hong, Jae Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.133-139
    • /
    • 2014
  • Magnetic Sensors can be employed to localize the unmanned vehicle which is running a predefined path where magnets are embedded for certain spaces. Among various sensor types, sensor arrays of 1-dimensional magnetic sensor have the merit of easy elimination of external magnetic component such as terrestrial magnetism. However, interpolation should be considered in the array sensors in order to increase the precision level because there is a limit in arranging sensors in close interval. We propose the novel interpolation method which can be performed with simple computation and represents the improved accuracy by increasing the linearity of the interaction formula. Demonstration of the linearity and simulation results show the proposed method exhibits the improved accuracy compared to the conventional method.