• Title/Summary/Keyword: Level Sensor

Search Result 1,655, Processing Time 0.026 seconds

Turf(Zoysia japonica L.) Quality Enhancement with By-product Gypsum (부산물 석고를 이용한 잔디 품질 개선)

  • Kim, Kye-Hoon;Hong, Sook-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.3
    • /
    • pp.56-63
    • /
    • 2004
  • This study was carried out to find out the effect of by-product gypsum(phosphogypsum, PG) application on enhancement of turf quality. For the first experiment, 10 ton $ha^{-1}$ PG was applied to 1m${\times}$10m (width${\times}$length) Plots with 4 replicates on a sloping area of fairway where turf(Zoysia japonica L.) was grown. Both top- and sub-soil samples were collected before and after treatment and were analyzed for pH, EC(e1ectrica1 conductivity), Ca and Mg contents. At the same time when soil samples were collected, specific color difference sensor value(SCDSV) that represented chlorophyll contents, fresh and dry weight of the turf were determined to find out the effect of PG treatment on turf growth. SCDSV of turf from PG treated plots measured at 98 and 147 days after treatment were significantly higher than those from control. Considering higher fresh and dry weight of leaf per unit area from PG treated plots than that from control, it was concluded that the elevated Ca and S level of the PG treated plots resulted in vigorous leaf growth of turf. For the second experiment 2, 5 and 10 ton $ha^{-1}$ PG were applied to 1m${\times}$10m(width${\times}$length) Plots with 3 replicates at a closer location as was used for the first experiment to find out the appropriate PG application rate. Before and after treatment soil and plant samples were collected and were analyzed by the same way as the first experiment. The pH of all the soil samples collected from PG treated plots at 38 days after treatment was lower than that from control. This trend changed as time passed. However, the pH of the soil from 10 ton $ha^{-1}$ PG treated plot was lower than that from control during the whole period of the second experiment. SCDSV, fresh and dry weight of leaf from PG treated plots at all 3 rates were higher than those from control for the second experiment. PG application to turf will be beneficial for both mass consumption of by-product gypsum and enhancement of turf quality.

INVESTIGATION OF RUNNING BEHAVIORS OF AN LPG SI ENGINE WITH OXYGEN-ENRICHED AIR DURING START/WARM-UP AND HOT IDLING

  • Xiao, G.;Qiao, X.;Li, G.;Huang, Z.;Li, L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.437-444
    • /
    • 2007
  • This paper experimentally investigates the effects of oxygen-enriched air (OEA) on the running behaviors of an LPG SI engine during both start/warm-up (SW) and hot idling (HI) stages. The experiments were performed on an air-cooled, single-cylinder, 4-stroke, LPG SI engine with an electronic fuel injection system and an electrically-heated oxygen sensor. OEA containing 23% and 25% oxygen (by volume) was supplied for the experiments. The throttle position was fixed at that of idle condition. A fueling strategy was used as following: the fuel injection pulse width (FIPW) in the first cycle of injection was set 5.05 ms, and 2.6 ms in the subsequent cycles till the achieving of closed-loop control. In closed-loop mode, the FIPW was adjusted by the ECU in terms of the oxygen sensor feedback. Instantaneous engine speed, cylinder pressure, engine-out time-resolved HC, CO and NOx emissions and excess air coefficient (EAC) were measured and compared to the intake air baseline (ambient air, 21% oxygen). The results show that during SW stage, with the increase in the oxygen concentration in the intake air, the EAC of the mixture is much closer to the stoichiometric one and more oxygen is made available for oxidation, which results in evidently-improved combustion. The ignition in the first firing cycle starts earlier and peak pressure and maximum heat release rate both notably increase. The maximum engine speed is elevated and HC and CO emissions are reduced considerably. The percent reductions in HC emissions are about 48% and 68% in CO emissions about 52% and 78%; with 23% and 25% OEA, respectively, compared to ambient air. During HI stage, with OEA, the fuel amount per cycle increases due to closed-loop control, the engine speed rises, and speed stability is improved. The HC emissions notably decrease: about 60% and 80% with 23% and 25% OEA, respectively, compared to ambient air. The CO emissions remain at the same low level as with ambient air. During both SW and HI stages, intake air oxygen enrichment causes the delay of spark timing and the increased NOx emissions.

Epipolar Image Resampling from Kompsat-3 In-track Stereo Images (아리랑3호 스테레오 영상의 에피폴라 기하 분석 및 영상 리샘플링)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.455-461
    • /
    • 2013
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. The AEISS sensor of the Korean satellite provides 0.7m panchromatic and 2.8m multi-spectral images with 16.8km swath width from the sun-synchronous near-circular orbit of 685km altitude. Kompsat-3 is more advanced than Kompsat-2 and the improvements include better agility such as in-track stereo acquisition capability. This study investigated the characteristic of the epipolar curves of in-track Kompsat-3 stereo images. To this end we used the RPCs(Rational Polynomial Coefficients) to derive the epipolar curves over the entire image area and found out that the third order polynomial equation is required to model the curves. In addition, we could observe two different groups of curve patterns due to the dual CCDs of AEISS sensor. From the experiment we concluded that the third order polynomial-based RPCs update is required to minimize the sample direction image distortion. Finally we carried out the experiment on the epipolar resampling and the result showed the third order polynomial image transformation produced less than 0.7 pixels level of y-parallax.

A Study on the Integrated Control and Safety Management System for 9% Ni Steel LNG Storage Tank (9% 니켈강재식 LNG 저장탱크용 통합제어안전관리시스템에 관한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.13-18
    • /
    • 2010
  • This paper presents the development of an integrated control and safety management system for 9% nickel steel LNG storage tank. The new system added the measuring equipment of pressure, displacement and force compared to the conventional measurement and control system. The measured data has simultaneously been processed by integrating and analyzing with new control equipments and safety management systems. The integrated control and safety management system, which may increase a safety and efficiency of a super-large full containment LNG storage tank, added additional pressure gauges and new displacement/force sensors at the outer side wall and a welding zone of a stiffener and top girder of an inner tank, and the inner side wall of a corner protection tank. The displacement and force sensors may provide failure clues of 9% nickel steel structures such as an inner tank and a corner protection, and a LNG leakage from the inner tank. The conventional leak sensor may not provide proper information on 9% nickel steel tank fracture even though LNG is leaked until the leak detector, which is placed at the insulation area between an inner tank and a corner protection tank, sends a warning signal. Thus, the new integrated control and safety management system is to collect and analyze the temperature, pressure, displacement, force, and LNG density, which are related to the tank system safety and leakage control from the inner tank. The digital data are also measured from control systems such as displacement and force of 9% nickel steel tank safety, LNG level and density, cool-down process, leakage, and pressure controls.

A Study on Integrated Control and Safety Management Systems for LNG Membrane Storage Tank (멤브레인식 LNG 저장탱크용 통합제어안전관리시스템에 대한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • In this study, the integrated control and safety management system for a super-large LNG membrane storage tank has been presented based on the investigation and analysis of measuring equipments and safety analysis system for a conventional LNG membrane storage tank. The integrated control and safety management system, which may increase a safety and efficiency of a super-large LNG membrane storage tank, added additional pressure gauges and new displacement/force sensors at the steel anchor between an inner tank and a prestressed concrete structure. The displacement and force sensors may provide clues of a membrane panel failure and a LNG leakage from the inner tank. The conventional leak sensor may not provide proper information on the membrane panel fracture even though LNG is leaked until the leak detector, which is placed at the insulation area behind an inner tank, send a warning signal. Thus, the new integrated control and safety management system is to collect and analyze the temperature, pressure, displacement, force and LNG density, which are related to the tank system safety and leakage control from the inner tank. The digital data are also measured from measurement systems such as displacement and force of a membrane panel safety, LNG level and density, cool-down process, leakage, and pressure controls.

A Study on Lightweight Block Cryptographic Algorithm Applicable to IoT Environment (IoT 환경에 적용 가능한 경량화 블록 암호알고리즘에 관한 연구)

  • Lee, Seon-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • The IoT environment provides an infinite variety of services using many different devices and networks. The development of the IoT environment is directly proportional to the level of security that can be provided. In some ways, lightweight cryptography is suitable for IoT environments, because it provides security, higher throughput, low power consumption and compactness. However, it has the limitation that it must form a new cryptosystem and be used within a limited resource range. Therefore, it is not the best solution for the IoT environment that requires diversification. Therefore, in order to overcome these disadvantages, this paper proposes a method suitable for the IoT environment, while using the existing block cipher algorithm, viz. the lightweight cipher algorithm, and keeping the existing system (viz. the sensing part and the server) almost unchanged. The proposed BCL architecture can perform encryption for various sensor devices in existing wire/wireless USNs (using) lightweight encryption. The proposed BCL architecture includes a pre/post-processing part in the existing block cipher algorithm, which allows various scattered devices to operate in a daisy chain network environment. This characteristic is optimal for the information security of distributed sensor systems and does not affect the neighboring network environment, even if hacking and cracking occur. Therefore, the BCL architecture proposed in the IoT environment can provide an optimal solution for the diversified IoT environment, because the existing block cryptographic algorithm, viz. the lightweight cryptographic algorithm, can be used.

First-order Wire-wound SQUID Gradiometer System Having Compact Superconductive Connection Structure between SQUID and Pickup Coil (SQUID와 검출코일의 초전도 결합방식이 개선된 1차 권선형 미분계 시스템)

  • Lee, Y.H.;Yu, K.K.;Kim, J.M.;Kwon, H.;Kim, K.;Park, Y.K.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.23-28
    • /
    • 2007
  • In order to have a superconductive connection between the wire-wound pickup coil and input coil, typically Nb terminal blocks with screw holes are used. Since this connection structure occupies large volume, large stray pickup area can be generated which can pickup external noise fields. Thus, SQUID and connection block are shielded inside a superconducting tube, and this SQUID module is located at some distance from the distal coil of the gradiometer to minimize the distortion or imbalance of uniform background field due to the superconducting module. To operate this conventional SQUID module, we need a higher liquid He level, resulting in shorter refill interval. To make the fabrication of gradiometers simpler and refill interval longer, we developed a novel method of connecting the pickup coil into the input coil. Gradiometer coil wound of 0.125-mm diameter NbTi wires were glued close to the input coil pads of SQUID. The superconductive connection was made using an ultrasonic bonding of annealed 0.025-mm diameter Nb wires, bonded directly on the surface of NbTi wires where insulation layer was stripped out. The reliability of the superconductive bonding was good enough to sustain several thermal cycling. The stray pickup area due to this connection structure is about $0.1\;mm^2$, much smaller than the typical stray pickup area using the conventional screw block method. By using this compact connection structure, the position of the SQUID sensor is only about 20-30 mm from the distal coil of the gradiometer. Based on this compact module, we fabricated a magnetocardiography system having 61 first-order axial gradiometers, and measured MCG signals. The gradiometers have a coil diameter of 20 mm, and the baseline is 70 mm. The 61 axial gradiometer bobbins were distributed in a hexagonal lattice structure with a sensor interval of 26 mm, measuring $dB_z/dz$ component of magnetocardiography signals.

  • PDF

Development of Gravity Gradient Referenced Navigation and its Horizontal Accuracy Analysis (중력구배기반 항법 구현 및 수평위치 정확도 분석)

  • Lee, Jisun;Kwon, Jay Hyoun;Yu, Myeongjong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.63-73
    • /
    • 2014
  • Recently, researches on DBRN(DataBase Referenced Navigation) system are being carried out to replace GNSS(Global Navigation Satellite System), as weaknesses of GNSS were found that are caused by the intentional interference and the jamming of the satellite signal. This paper describes the gravity gradient modeling and the construction of EKF(Extended Kalman Filter) based GGRN(Gravity Gradient Referenced Navigation). To analyze the performance of GGRN, fourteen flight trajectories were made for simulations over whole South Korea. During the simulations, we considered the errors in both DB(DataBase) and sensor as well as the flight altitudes. Accurate performances were found, when errors in the DB and the sensor are small and they located at lower altitude. For comparative evaluation, the traditional TRN(Terrain Referenced Navigation) was also developed and performances were analyzed relative to those from the GGRN. In fact, most of GGRN performed better in low altitude, but both of precise gravity gradient DB and gradiometer were required to obtain similar level of precisions at the high altitude. In the future, additional tests and evaluations on the GGRN need to be performed to investigate on more factors such as DB resolution, flight speed, and the update rate.

IoT Middleware for Effective Operation in Heterogeneous Things (이기종 사물들의 효과적 동작을 위한 사물인터넷 미들웨어)

  • Jeon, Soobin;Han, Youngtak;Lee, Chungshan;Seo, Dongmahn;Jung, Inbum
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.9
    • /
    • pp.517-534
    • /
    • 2017
  • This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices, easily constructing a local or global network and sharing their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These layers enable integrated sensing device operations, efficient resource management, and interconnection between peripheral IoT devices. In addition, MinT provides a high-level API, allowing easy development of IoT devices by developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to existing middlewares, average response times decreased by 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices.

Comparison of Local Mean Temperature Equations for GPS-based Precipitable Water Vapor Determination (GPS 가강수량 결정을 위한 한국형 평균온도식 비교)

  • Ha, Ji-Hyun;Park, Kwan-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.425-434
    • /
    • 2008
  • The mean temperature equation is a key factor in calculating GPS meteorological information. A local mean temperature equation should be used to improve accuracy of GPS PWV (Precipitable Water Vapor). In this paper, four local mean temperature equations, HP, $HP_M,\;HPt_Y,\;and\;HPt_M$ from Ha & Park (2008) were used to analyze the effects of local models in determining GPS PWV. Four different sets of GPS PWVs were compared with radiosonde PWV to validate the accuracies of local models. GPS PWVs of four local models have similar trends compared against radiosonde PWV. The bias and RMS error were the same level: the bias is ${\sim}3mm$ and the RMS is ${\sim}3.6mm$ after the bias was removed. Especially, with $HPt_Y\;and\;HPt_M$ models one can obtain accurate PWVs even without surface temperature measurements. And we investigated dry bias of radiosonde measurements depending on sensor types and observation time at Sokcho weather station. After the radiosonde sensor equipment was changed from RS80-15L to GRS DFM-06, dry bias of radiosonde PWV decreased about 18.2% during daytime (KST 09:00), and 16.1% during nighttime (KST 21:00).