• Title/Summary/Keyword: Level Rail Road

Search Result 30, Processing Time 0.029 seconds

Regional Transformation in 'Myeon' Administrative District adjacent to Urban Area (도시주변 면단위 행정구역의 지역 변화 -전라북도 조촌면을 사례로-)

  • Cho, Sung-Wook
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.1
    • /
    • pp.59-71
    • /
    • 2006
  • The purpose of this study is to explain the regional transformation in the lowest level administration district(Myeon). The major factor of regional transformation is the change of geographical range, identity of place name, the formation and change of regional center. Jo-Chon Myeon as a sample study region is located in near Jeon-Ju city. The large and dynamic city in neighbor is strong influenced to the change of geographical range. But the place name has Identity in spite of the regional change. The formation of new regional center is influenced by new road, rail road and station, japanese large farm, administration office in this district.

  • PDF

On the Cost Analysis of Container Physical Distribution System in Pusan Port (부산항 컨테이너 물류 시스템의 비용분석에 관하여)

  • 박창호;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.3
    • /
    • pp.13-24
    • /
    • 1991
  • This paper aims to determining the optimal capacity of Pusan port in view point of Container Physical Distribution cost. It has been established a coast model of the container physical distribution system in Pusan port is composed of 4 sub-systems and in-land transport system. Cargo handling system, transfer & storage system and in-land transport system, and analyzed the cost model of the system. From this analysis, we found that the system had 7 routes including in-land transport by rail or road and coastal transport by feeder ship between Pusan port and cargo owner's door. Though railway transport cost was relatively cheap, but, it was limited to choose railway transport routes due to the introducing of transport cargo allocation practice caused by shortage of railway transport capacity. The physical distribution ost for total import & export container through Pusan port was composed of 4.47% in port entring cost, 12.98% in cargo handling cost, 7.44% in transfer & storage cost and 75.11% in in-land transport cost. Investigation in case of BCTOC verified the results as follows. 1) The optimal level of one time cargo handling was verified 236VAN (377TEU) and annual optimal handling capacity was calculated in 516, 840VAN(826, 944TEU) where berth occupancy is $\rho$=0.6 when regardless of port congestion cost, 2) The optimal level of one time cargo handling was verified 252VAN (403TEU) and annual optimal handling capacity was calculated in 502, 110VAN (803, 376TEU) where berth occupancy is $\rho$=0.58 when considering of port congestion cost.

  • PDF

Dynamic Performance of Guardrail System with Various Post Shapes Based on 3-D Soil Material Model (3차원 지반재료 모델기반의 다양한 지주형상을 갖는 노측용 가드레일의 동적성능 평가)

  • Lee, Dong Woo;Yeo, Yong Hwan;Yang, Seung Ho;Woo, Kwang Sung
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.19-28
    • /
    • 2014
  • PURPOSES : This paper evaluates, using LS/DYNA-3D software, the vehicle impact performance of flexible barriers made of steel W-Beam supported by four different types of post configurations. These types include circular post, H-shape post, C-shape post, and square post. METHODS : The post-soil interaction has been investigated according to different impact angles. For this purpose, energy absorption, maximum displacements of post and rail, and occupant risk index of THIV have been compared each other. The three dimensional soil material model, instead of the conventional spring model based on Winkler and p-y curve, has been used to increase the correctness of computational model. RESULTS : It is noted the crash energy absorption has been increased with respect to the increase of impact angle. CONCLUSIONS : In particular, a post with open section(H-shape, C-shape) shows the greater crash energy absorption capability as compared with a post with closed section under the same level of impact conditions.

Investigation and Evaluation of Noise Level of the Busan Subway (부산 지하철 소음도 조사 및 평가)

  • Lee, Chang-Myung;Jung, Jin-Guk;Jung, Jin-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.243-250
    • /
    • 2011
  • Noise levels of the three subway lines of Busan city have been investigated. Averaged cabin noise of the train has been measured during the train trip for each station. It has been measured with separation of day time (9:00~18:00) and night time (18:00~22:00) measurements but there was no big difference on the measured data. Repeating for the measured data has been confirmed with twice measurements in May and June 2010. Several noise effects to the subway noise levels of Busan are explained. Those are screen door effect, rail road surface condition, subway train type and curvature of railway. Among three subway lines of Busan city, the line 2 is relatively noisy and its reasons are studied. It has been shown that the screen door effect is 10 dB(A) and S shape of sharp curve contributes in high noise level.

Estimating the Efficiency of Transportation Energy Consumption based on Railway Infrastructure and Travel behavior Characteristics

  • Choi, Hyunsu;Nakagawa, Dai;Matsunaka, Ryoji;Oba, Tetsuharu;Yoon, Jongjin
    • International Journal of Railway
    • /
    • v.6 no.2
    • /
    • pp.33-44
    • /
    • 2013
  • In recent years, energy consumption in the transportation sector by expanding motorization continues to increase in almost every country in the world. Moreover, the growth rate of the transportation energy consumption is significantly higher than those of the civilian and industrial sectors. Therefore, every country strives to reduce its dependence on private transport, which is the main contributor to the transportation energy consumption. In many countries, concepts such as Transit Oriented Development (TOD) or New Urbanism, which controls road traffic by increasing the proportion of the public transportation significantly, have been implemented to encourage a modal shift to public transport. However, the level of change required for eliminating environmental problems is a challenging task. Minimizing transportation energy consumption by controlling the increase of the traffic demand and maintaining the level of urban mobility simultaneously is a pressing dilemma for each city. Grasping the impact of the diversity of the urban transport and infrastructure is very important to improve transportation energy efficiency. However, the potential for reducing urban transportation energy consumption has often been ineffectively demonstrated by the diversity of cities. Therefore, the accuracy of evaluating the current efficiency rate of the urban energy consumption is necessary. Nevertheless, quantitative analyses related to the efficiency of transportation energy consumption are scarce, and the research on the current condition of consumption efficiency based on international quantitative analysis is almost nonexistent. On the basis of this background problem definitions, this research first built a database of the transportation energy consumption of private modes in 119 cities, with an attempt to reflect individual travel behaviors calculated by Person Trip data. Subsequently, Data Envelopment Analysis (DEA) was used as an assessment method to evaluate the efficiency of transportation energy consumption by considering the diversity of the urban traffic features in the world cities. Finally, we clarified the current condition of consumption efficiency by attempting to propose a target values for improving transportation energy consumption.

An improved methodology for estimating traffic accident cost savings in the (preliminary) feasibility study ((예비)타당성조사의 교통사고 감소편익 산정방안 보완 연구)

  • Jang, Su-Eun;Jeong, Gyu-Hwa
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.15-21
    • /
    • 2007
  • This paper proposes an improved methodology for estimating traffic accident cost savings in the transport appraisal. Four major problems from the existing framework are identified and their alternatives are suggested. First, casualties in the established approach are classified by just two types of 'killed' and 'injured'. This study supplies the indices of fatality further details. Namely, road victims are regrouped by 'killed', 'seriously injured', 'slightly injured', and 'accident reports'. Those of railways are similarly sorted by 'killed', 'seriously injured', and 'slightly injured'. Second, damage only accidents are not satisfactorily considered in the current arrangement. The accidents should be considered as one of the accident types and the social cost of them should also be evaluated. Third, the unit cost of accidents is given by the total value. The unit cost is consisted of several elements and each loss would be useful for a policy frame. This study breaks down the total figure into four pieces of costs, namely production loss, medical treatment, property loss, and administrative costs. Finally, there is inconsistency in the audit between roads and railways. Road accidents are analyzed by road types. On the other hand, patronage or others is the classification rule of rail accident costs. This paper suggests a way that the accident costs of two modes can be coherently estimated based on the level of services by each mode. The result of this study is expected to help frame more cautious social overhead capital investment policies.

Logical Analysis of Real-time Discrete Event Control Systems Using Communicating DEVS Formalism (C-DEVS형식론을 이용한 실시간 이산사건 제어시스템의 논리 해석 기법)

  • Song, Hae Sang;Kim, Tag Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.35-46
    • /
    • 2012
  • As complexity of real-time systems is being increased ad hoc approaches to analysis of such systems would have limitations in completeness and coverability for states space search. Formal means using a model-based approach would solve such limitations. This paper proposes a model-based formal method for logical analysis, such as safety and liveness, of real-time systems at a discrete event system level. A discrete event model for real-time systems to be analyzed is specified by DEVS(Discrete Event Systems Specification) formalism, which specifies a discrete event system in hierarchical, modular manner. Analysis of such DEVS models is performed by Communicating DEVS (C-DEVS) formalism of a timed global state transition specification and an associated analysis algorithm. The C-DEVS formalism and an associated analysis algorithm guarantees that all possible states for a given system are visited in an analysis phase. A case study of a safety analysis for a rail road crossing system illustrates the effectiveness of the proposed method of the model-based approach.

Damage identification in a wrought iron railway bridge using the inverse analysis of the static stress response under rail traffic loading

  • Sidali Iglouli;Nadir Boumechra;Karim Hamdaoui
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.153-166
    • /
    • 2023
  • Health monitoring of civil infrastructures, in particular, old bridges that are still in service, has become more than necessary, given the risk that a possible degradation or failure of these infrastructures can induce on the safety of users in addition to the resulting commercial and economic impact. Bridge integrity assessment has attracted significant research efforts over the past forty years with the aim of developing new damage identification methods applicable to real structures. The bridge of Ouled Mimoun (Tlemcen, Algeria) is one of the oldest railway structure in the country. It was built in 1889. This bridge, which is too low with respect to the level of the road, has suffered multiple shocks from various machines that caused considerable damage to its central part. The present work aims to analyze the stability of this bridge by identifying damages and evaluating the damage rate in different parts of the structure on the basis of a finite element model. The applied method is based on an inverse analysis of the normal stress responses that were calculated from the corresponding recorded strains, during the passage of a real train, by means of a set of strain gauges placed on certain elements of the bridge. The results obtained from the inverse analysis made it possible to successfully locate areas that were really damaged and to estimate the damage rate. These results were also used to detect an excessive rigidity in certain elements due to the presence of plates, which were neglected in the numerical reference model. In the case of the continuous bridge monitoring, this developed method will be a very powerful tool as a smart health monitoring system, allowing engineers to take in time decisions in the event of bridge damage.

High Efficient Inductive Power Supply System Implemented for On Line Electric Vehicles

  • Huh, Jin;Park, Eun-Ha;Jung, Gu-Ho;Rim, Chun-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.105-110
    • /
    • 2009
  • The On Line Electric Vehicles(OLEV) that can pick up inductive power from underground coils on driving with high efficiency have been developed this year, and is now proposed in this paper. The IPS(Inductive Power Supply) system consists of power supply inverters, power supply rails, pick up modules, and a regulator. There are 3 generations of IPS have been developed so far, and the $4^{th}$ generation IPS is being developed. The $1^{st}$ generation has been demonstrated this Feb. 27, which is equipped with mechanically auto tracking pick-up module with 1cm air gap, and showed 80% power efficiency. The $2^{nd}$ generation IPS applied to an 120kW (average)/240kW(peak) motor powered electric bus has 17cm air gap with 72% power efficiency. For the $2^{nd}$ generation IPS, the Power supply inverter has 440V, 3phase input and 200A @ 20kHz output. The test power supply rail of 240m long is segmented by 60m each, where newly developed core structure and power cable are constructed under the road covered with asphalt of 5cm thickness. The pick-up modules which consist of core, winding wire, and rectifiers are fixed to the bottom of the bus which can carry more than 40 passengers and can pick up max. 60kW. To remove parasitic component and to transfer maximum power between them resonant circuit topology is applied to the primary and secondary sides. The EMF level is below 62.5mG at 1.75m from the center of the road to meet the regulation. Several effective ways of reducing EMF levels have been developed. In addition, effective ways to solve problems related high frequency power cables buried in ground and it's proof from soil have been studied also. This development shows that the IPS system is capable of supplying enough power to the pick-up of OLEV and can reduce battery size, weight and cost, which means the IPS with OLEV is one of the best candidate for EV.

  • PDF

A Feasibility Study of the K-LandBridge through a Linear Programming Model of Minimum Transport Costs (최소운송비용의 선형계획모형을 통한 K-LandBridge의 타당성 연구)

  • Koh, Yong Ki;Seo, Su Wan;Na, Jung Ho
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.3
    • /
    • pp.95-108
    • /
    • 2016
  • China has recently advocated a national strategy called "One Belt One Road" and transferred to execution to refine it into detailed action plans and has continued to fix the complement. However, the Korean Peninsula, including the North Korea remains could not be included at all in the Chinese development policy and framework in terms of the International Logistics. Currently it is raised between Korea-China rail ferry system again and that is when we need to make effective policy development on international multimodal transport system in Northeast Asia. This paper introduces the K-LB (Korea LandBridge) as its execution plan and conducted a feasibility study on this. K-LB consists of a Korea-Russian train ferry system based in Pohang Yeongil New Port(light-wing) and a Korea-China train ferry system based in Saemangeum New Port(left-wing). These two wings are linked to the existing rail system in Korea. This study is convinced that the K-LB is an effective international logistics system in the current terms and conditions and also demonstrated that it is feasible to introduce th K-LB on the peninsula. More strictly speaking, through a linear programming under objective function that minimize the transport cost quantified prior to demonstrate the feasibility, the available ranges and conditions for the transportation costs that are ensured the effectiveness of the K-LB are presented as results. According to the results, if the transport cost of K-LB is cheaper about 34.5% than that of sea transport such as container transport, the object goods may be transported by K-LB on this route. It means that the K-LB system has a competitive advantage due to more rapid customs clearance as well as omitted loading and unloading procedures over container transportation system. It also noted that the threshold level may not be large. Therefore, K-LB has competitive enough to prove its introduction in the Northeast Asian logistics system.