• 제목/요약/키워드: Levanase

검색결과 11건 처리시간 0.024초

Levan으로부터 Levanheptaose를 생산하는 미생물의 분리 및 배양 (Isolation and Cultivation of Microorganism Producing Levanheptaose from Levan)

  • 임영순;강수경;강은정;이태호
    • 미생물학회지
    • /
    • 제34권1_2호
    • /
    • pp.37-42
    • /
    • 1998
  • 토양으로부터 levan을 분해하여 단일종의 fructooligosaccharide를 생산하는 새로운 미생물을 분리 선별하여 본 연구의 공시균주로 선택하였다. Levanase 생산을 위한 최적 배지조성은 0.5% levan, 0.3% yeast extract 0.3% $NaNO_3$, 0.1% $K_2HPO_4$, 0.05% NaCl(pH 8.0)이었으며, 500ml용 shaking flask에 배지 50ml를 넣어 $30^{\circ}C$에서 54시간 배양시켰을 때 목적효소의 생산이 최대에 도달하였다. Levanase에 의해 생성되는 생성물은 단일종의 oligo당임이 확인되었으며 측쇄가 많은 levan으로부터는 소량의 측쇄구조를 가진 oligosaccharide로 추정되는 미지의 물질이 부산물로 생성되었다. 생성 oligo당을 순수하게 정제하여 HPLC 및 ESI-MASS로 중합도를 조사한 결과 DP가 7인 levanheptaose임이 판명되었다.

  • PDF

Levan으로부터 Levanbiose를 생산하는 미생물의 분리 및 배양 (Isolation and Cultivation of Microorganism Producing Levanbiose from Levan)

  • 이태호;강은정;강수경
    • 한국식품영양과학회지
    • /
    • 제27권3호
    • /
    • pp.441-447
    • /
    • 1998
  • A bacterial strain No. 43 was isolated from soil samples as a levan-assimiating microorganism producing an extracellular levanase and hydrolying levan to levanbiose. According to the taxonomic characteristics of its morphological and physiological properties, the strain was idenified as Pseudomonas sp. No. 43. The optimum culura medium was composed of 10g levan, 5g(NH4)2SO4, 3g NH4Cl, 3g polypepton, 1g K2HPO4, 0.5gMgSO4.7H2O, and 0.2g MnCl2.4H2O per liter. The cultivation for levanase was carried out in pH 7.0 at 4$0^{\circ}C$ for 28hr. The reaction product was a kind of oligosaccharide and it was purified by chilled ethanol precipitation and gel filtration for evalluation of degree of polymerization (DP). The purified product was determined as levanbiose of MW 342 and DP2 by HPLC and FAB-MS.

  • PDF

Molecular Cloning and Nucleotide Sequence of Endo-Inulinase Gene from Xanthomonas oryzae #5

  • 김병우;김미랑;유동주
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.655-659
    • /
    • 2000
  • 토양에서 분리한 endo-inulinase 생산 균주인 Xanthomonas oryzae #5로 부터 11.5kb의 endo-inulinase 유전자를 포함하는 재조합 plasmid를 함유한 형질 전환주를 분리하였다. 11.5kb의 단편으로부터 8.6kb, 4.1kb의 단편을 포함한 pDI 2, pDI4 재조합 plasmid를 제작하여 활성을 확인한 결과 endo-inuliase 활성을 나타내었으며, 재조합 plasmid pDI 2를 이용하여 DNA sequence를 한 결과 endo-inulinase 유전자는 1,333개의 아미노산으로 구성된 ORF를 가지고 있었다. 또한 B. circulans MCI-2554의 CFTase와 아미노산 배열에 있어은 약 72%의 높은 homology를 나타냈었으며, 다른 fructan hydrolases, inulinase, levanase와의 아미노산 비교로부터 ${\beta}-fructouranosidase$ motif를 포함한 6개의 유사부위를 확인하였다.

  • PDF

Levanoligosaccharide(levanoctaose)의 장내미생물에 대한 생육효과 (Growth Effect of Levanoligosaccharide(Levanoctaose) on Intestinal Microflora)

  • 강수경;박나희;이태호
    • 미생물학회지
    • /
    • 제35권2호
    • /
    • pp.153-157
    • /
    • 1999
  • Pseudomonas sp. K-52 유래의 levanase 에 의해 생산되는 levanoctaose 가 growth factor로서 각종 장내미생물에 미치는 영향을 조사하였다. In vitro 실험에서 0.5% levanoctaose를 탄소원으로 하여 glucose 일 경우와 상호 비교하여 분석한 결과 levanoctaose 는 Escherichia coli, Clostridium perfringens, Eubacterium limosum, Staphylococcus aureus 보다 Bifidobacterium adolescentis, Lactobacillius acidophilus, Bacteroid fragilis 등에 의해 효율적으로 이용되었다. 쥐를 이용한 in vivo 실험에서 탄소원의일부로 levanotaose를 제공한 경우, 장내 Bifidobacteria 수는 약 10배, butyrate 양은 2.3배, $\beta$-fructosidase 활성은 약 1.5배 증가하였다. 따라서 분리균주 Pseudomonas sp. K-2의 levanase로부터 생성되는 levanoctaose는 Bifidobacteria, Lactobacillus 와 같은 장내 유익균주에 선별적으로 이용되는 것이 확인되었다.

  • PDF

Levanoligosaccharide의 장내미생물의 생육에 미치는 생리효과 (Physiological Effects of Levanoligosaccharide on Growth of Intestinal Microflora)

  • 이태호;강수경;박수제;이재동
    • 한국식품영양과학회지
    • /
    • 제29권1호
    • /
    • pp.35-40
    • /
    • 2000
  • The effect of levanheptaose produced by levanase from Streptomyces sp. 366L on principle intestinal microflora was investigated. The reaction product, levanheptaose, was used as a carbon source for various intestinal microflora. As a results, Bifidobacterium adolescentis, Lactobacillus acidophilus, and Eubacterium limosum grew effectively in the in vitro experiment, whereas Clostridium perfringens, E. coli, and Staphylococcus aureus did not. Therefore levanheptaose seems to promote selectively the growth of B. adolescentis and L. acidophilus. In the in vivo experiment, the effect of levanheptaose on the growth of intestinal microflora, $\beta$-fructosidase activity, pH, and butyrate concentration were examined in rats. Apparently, the number of fecal Bifidobacteria, the amount of butyrate, and $\beta$-fructosidase activity were increased, whereas total aerobes and pH were reduced in rats fed by levanheptaose diets, compared with those of control diets. We concluded that those effects may be beneficial in improving gastrointestinal health.

  • PDF

Probing the Critical Residues for Intramolecular Fructosyl Transfer Reaction of a Levan Fructotransferase

  • Moon, Keum-Ok;Choi, Kyoung-Hwa;Kang, Ho-Young;Oh, Jeong-Il;Jang, Se-Bok;Park, Cheon-Seok;Lee, Jong-Hoon;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1064-1069
    • /
    • 2008
  • Levan fructotransferase (LFTase) preferentially catalyzes the transfructosylation reaction in addition to levan hydrolysis, whereas other levan-degrading enzymes hydrolyze levan into a levan-oligosaccharide and fructose. Based on sequence comparisons and enzymatic properties, the fructosyl transfer activity of LFTase is proposed to have evolved from levanase. In order to probe the residues that are critical to the intramolecular fructosyl transfer reaction of the Microbacterium sp. AL-210 LFTase, an error-prone PCR mutagenesis process was carried out, and the mutants that led to a shift in activity from transfructosylation towards hydrolysis of levan were screened by the DNS method. After two rounds of mutagenesis, TLC and HPLC analyses of the reaction products by the selected mutants revealed two major products; one is a di-D-fructose-2,6':6,2'-dianhydride (DFAIV) and the other is a levanbiose. The newly detected levanbiose corresponds to the reaction product from LFTase lacking transferring activity. Two mutants (2-F8 and 2-G9) showed a high yield of levanbiose (38-40%) compared with the wild-type enzyme, and thus behaved as levanases. Sequence analysis of the individual mutants responsible for the enhanced hydrolytic activity indicated that Asn-85 was highly involved in the transfructosylation activity of LFTase.

Exploring Levansucrase Operon Regulating Levan-Type Fructooligosaccharides (L-FOSs) Production in Priestia koreensis HL12

  • Hataikarn Lekakarn;Daran Prongjit;Wuttichai Mhuantong;Srisakul Trakarnpaiboon;Benjarat Bunterngsook
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권10호
    • /
    • pp.1959-1968
    • /
    • 2024
  • Levan biopolymer and levan-type fructooligosaccharides (L-FOSs) are β-2,6-linked fructans that have been used as non-digestible dietary fiber and prebiotic oligosaccharides in food and cosmeceutical applications. In this study, we explore the operon responsible for levan and L-FOSs production in Priestia koreensis HL12. Presented is the first genomic perspective on sucrose utilization and the levan biosynthesis pathway in this bacterium. Regarding sequence annotation, the putative levansucrase operon responsible for β-2,6-linked fructan was identified in the genome of strain HL12, and comprises sacB levansucrase gene belonging to GH68, located adjacent to levB endo-levanase gene, which belongs to GH32. Importantly, sugars related with the levan biosynthesis pathway are proposed to be transported via 3 types of transportation systems, including multiple ABCSugar and glucose/H+ transporters, as well as glucose- and fructose-specific PTS systems. Based on product profile analysis, the HL12 strain exhibited high efficiency in levan production from high sucrose concentration (300 g/l), achieving the highest yield of 127 g/l (equivalent to 55% conversion based on sucrose consumption), together with short-chain L-FOSs (DP3-5) and long-chain L-FOSs with respective size larger than DP6 after 48 h incubation. These findings highlight the potential of P. koreensis HL12 as a whole-cell biocatalyst for producing levan and L-FOSs, and underscore its novelty in converting sugars into high-value-added products for diverse commercial and industrial applications.