• Title/Summary/Keyword: Leuconostoc lactis

Search Result 73, Processing Time 0.025 seconds

Cultural Characteristics of Psychrotrophic Lactic Acid Bacteria Isolated from Kimchi (김치에서 분리한 저온성 젖산균의 배양특성)

  • So, Myung-Hwan;Kim, Young-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.506-515
    • /
    • 1995
  • The cultural characteristics of 60 strains of psychrotrophic lactic acid bacteria which were isolated from kimchi, a Korean traditional fermented vegetable food, and identified as Leuconostoc mesenteroides subsp. mesenteroides, Leu. mesenteroides subsp. dextranicum, Leu. paramesenteroides, Leu. lactis, Lactobacillus bavaricus and Lac. homohiochii were tested. All strains grew at $5^{\circ}C,\;10^{\circ}C\;and\;37^{\circ}C$ in tomato glucose broth, but not at $45^{\circ}C$. The optimum growth temperature of Leu. mesenteroides and Lactobacillus sp. were $33{\sim}34^{\circ}C\;and\;34{\sim}36^{\circ}C$, respectively. All strains of Leu. mesenteroides and Lactobacillus sp. grew at 4.8 and 4.2 of initial pH, but not at 4.0. The final pH of Leu. mesenteroides and Lactobacillus sp. in glucose broth were $3.84{\sim}4.10\;and\;3.82{\sim}3.99$, respectively. None of the 60 strains clotted milk nor reduced litmus in litmus milk. All strains of Leu. mesenteroides and Lactobacillus sp. grew in tomato glucose broth containing 7% ethanol or 6.5% NaCl, but not in the broth containing 15% ethanol or 10% NaCl. All strains grew in tomato glucose broth containing 40% bile juice and survived in the artificial gastric juice of pH 3.5. Furthermore, all strains of Leu. mesenteroides survived in the artificial gastric juice of pH 3.0. Since many strains of lactic acid bacteria tested in this study showed differences in several physiological characteristics from those described in Bergey's Manual of Systematic Bacteriology, it was considered that further tests would be necessary to clarify their positions in taxonomic system.

  • PDF

Storage-life and Palatability Extension of Betula platyphylla Sap Using Lactic Acid Bacteria Fermentation (유산균 발효를 이용한 자작나무 수액의 저장성 및 기호성 증진 기술)

  • Kim, Jong-Ho;Lee, Woon-Jong;Cho, Youn-Won;Kim, Kwang-Yup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.6
    • /
    • pp.787-794
    • /
    • 2009
  • In this study, a new method for extending storage-life and palatability of Betula platyphylla sap by applying lactic acid bacteria fermentation was developed. The fluids of saps were filtered through 0.22 ${\mu}m$ membrane filter and each fermented by 8 different lactic acid bacteria which are Lactobacillus acidophilus, Lactobacillus brevis, Leuconostoc mesenteroides, Leuconostoc lactis, Lactococcus lactis, Pediocossus pentosaceus, Pediococcus dextrinicus, Streptococcus thermophilus. All the tested lactic acid bacteria except P. dextrinicus grew fast up to $10^6{\sim}10^7cfu/mL$ levels and lowered pH down to about pH 4 levels in 48 hours in both saps. The produced organic acids and lowered pH level inhibited the growth of spoilage microorganisms almost completely for 2 weeks during storage at room temperature. Addition of xylitol in the saps before fermentation accelerated the growth of lactic acid bacteria and increased the sweetness and overall taste of final product. The filtration process did not affect the mineral compositions of Betula platyphylla saps. Also the compositions and amounts of minerals showed very minor differences before and after fermentation in Betula platyphylla saps inoculated with L. acidophilus. By applying lactic acid fermentation to extend storage-life of tree saps instead of heat treatment, it was possible to keep natural minerals in active forms without any modifications.

Isolation and Identification of Lactic Acid Bacteria from Traditional Dairy Products in Baotou and Bayannur of Midwestern Inner Mongolia and q-PCR Analysis of Predominant Species

  • Wang, Dan;Liu, Wenjun;Ren, Yan;De, Liangliang;Zhang, Donglei;Yang, Yanrong;Bao, Qiuhua;Zhang, Heping;Menghe, Bilige
    • Food Science of Animal Resources
    • /
    • v.36 no.4
    • /
    • pp.499-507
    • /
    • 2016
  • In this study, traditional culture method and 16S rRNA gene analysis were applied to reveal the composition and diversity of lactic acid bacteria (LAB) of fermented cow milk, huruud and urum from Baotou and Bayannur of midwestern Inner Mongolia. Also, the quantitative results of dominant LAB species in three different types of dairy products from Baotou and Bayannur were gained by quantitative polymerase chain reaction (q-PCR) technology. Two hundred and two LAB strains isolated from sixty-six samples were identified and classified into four genera, namely Enterococcus, Lactococcus, Lactobacillus, Leuconostoc, and twenty-one species and subspecies. From these isolates, Lactococcus lactis subsp. lactis (32.18%), Lactobacillus plantarum (12.38%) and Leuconosto mesenteroides (11.39%) were considered as the dominated LAB species under the condition of cultivating in MRS and M17 medium. And the q-PCR results revealed that the number of dominant species varied from samples to samples and from region to region. This study clearly shows the composition and diversity of LAB existing in fermented cow milk, huruud and urum, which could be considered as valuable resources for LAB isolation and further probiotic selection.

Effect of Platycodon grandiflorum Fermentation with Salt on Fermentation Characteristics, Microbial Change and Anti-obesity Activity (소금 첨가에 따른 도라지 발효 특성과 미생물 변화 및 항비만 효능 평가)

  • Shin, Na Rae;Lim, Sokyoung;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2018
  • Objectives: This study investigated the effect on microbial ecology, fermentation characteristics and anti-obesity of Platycodon grandiflorum (PG) fermentation with salt. Methods: PG was fermented for four weeks with 2.5% salt and the characteristics of fermented PG were performed by measuring pH, total sugar content, viable bacteria number and microbial profiling. Also, we measured total polyphenol, flavonoid and the percent of inhibition of lipase activity and lipid accumulation. Results: Salt added to PG for fermentation had an effect on pH, total sugar, total and the number of lactic acid bacteria. Total sugar and pH were reduced and number of total and lactic acid bacteria were increased after fermentation. The majority of bacteria for fermentation were Lactobacillus plantarum, Leuconostoc psedomesenteroides and Lactococcus lactis subspecies lactis regardless of salt addition. However, microbial compositions were altered by added salt and additional bacteria including Weissella koreensis, W. viridescens, Lactobacillus sakei and Lactobacillus cuvatus were found in fermented PG with salt. Total flavonoid was increased in fermented PG and lipid accumulation on HepG2 cells treated with fermented PG was reduced regardless of salt addition. Moreover, fermented PG without salt suppressed lipase activity. Conclusions: Addition of salt for PG fermentation had influence on fermentation characteristics including pH and sugar content as well as number of bacteria and microbial composition. In addition, fermented PG showed anti-obesity effect by increasing flavonoid content and inhibition of lipase activity and lipid accumulation.

Identifications of Predominant Bacterial Isolates from the Fermenting Kimchi Using ITS-PCR and Partial 16S rDNA Sequence Analyses

  • CHIN HWA SUP;BREIDT FRED;FLEMING H. P.;SHIN WON-CHEOL;YOON SUNG-SIK
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.68-76
    • /
    • 2006
  • Despites many attempts to explore the microbial diversity in kimchi fermentation, the predominant flora remains controversial to date. In the present study, major lactic acid bacteria (LAB) were investigated in Chinese cabbage kimchi in the early phase of fermention. For the samples over pH 4.0, viable cell counts of Leuconostoc and Pediococcus were $10^6\;cfu/ml$ and below $10^2\;cfu/ml$, respectively, and 20 isolates out of 172 were subjected to a biochemical identification (API 50 CH kit) as well as molecular-typing methods including ITSPCR with a RsaI digestion and 16s rRNA gene sequence analysis for species confirmation. Seven isolates were nicely assigned to Lb. brevis, 6 to Leuconostoc spp. (2 mesenteroides, 2 citreum, I carnosum, I gasicomitatum), 4 to Weissella (3 kimchii/cibaria, 1 hanii) and 2 to other Lactobacillus spp. (1 farciminis, 1 plantarum). On the other hand, the biochemical identification data revealed 9 strains of Lb. brevis, 6 strains of Leuconostocs,2 strains of Lb. plantarum and 1 strain each of Lb. coprophilus and Lactococcus lactis. However, a single isolates, YSM 16, was not matched to the ITS-PCR database constructed in the present study. Two Lb. brevis strains by API 50 CH kit were reassigned to W kimchii/cibaria, Lb. coprophilus or W hanii, respectively, judging from the results by the above molecular typing approaches. As a whole, the identification data obtained by the biochemical test were different from those of ITS-PCR molecular method by about $63\%$ at genus-level and $42\%$ at species-level. The data by the ITS-PCR method conclusively suggest that predominant LAB species is probably heterolactic Lb. brevis, followed by W kimchii/cibaria, Leuc. mesenteroides, and Leuc. citreum, in contrast to the previous reports [3] that Leuc. mesenteroides is the only a predominant species in the early phase kimchi fermentation.

Antibacterial activity of lactic acid bacteria isolated from traditional fermented foods and development of a starter for fermented milk (전통발효식품에서 분리한 유산균의 항균 활성 및 발효유 스타터 개발)

  • Park, Jong-Hyuk;Moon, Hye-Jung;Oh, Jeon-Hui;Lee, Joo-Hee;Choi, Kyung-Min;Cha, Jeong-Dan;Lee, Tae-Bum;Lee, Min-Jeong;Jung, Hoo-Kil
    • Food Science and Preservation
    • /
    • v.20 no.5
    • /
    • pp.712-719
    • /
    • 2013
  • This study was conducted to investigate the antibacterial activity of lactic acid bacteria isolated from traditional fermented foods and to develop a new starter for fermented milk. The isolates were identified using 16S rDNA sequencing and named Lactobacillus plantarum A, Leuconostoc lactis B and L. acidophilus C. The activity of these strains to inhibit the growth of food-borne human pathogens (Escherichia coli NCTC 12923, Salmonella Typhimurium NCTC 12023, Listeria monocytogenes NCTC 11994) was measured using the paper disc method. All these strains showed strong antibacterial activity against Li. monocytogenes NCTC 11994. The experiment groups were the fermented milks with these strains, and the control group was the fermented milk with the commercial starter (ABT 5). The change of pH, acidity and viable cell counts were measured during their aging time. All the experiment groups showed a significant difference in their aging times compared to the control group. However, the sensory test showed that the experiment groups can be used as useful starters for fermented milk. This result suggests that L. plantarum A, Leu. lactis B and L. acidophilus C have the potential to be developed as new starters for fermented milk.

Depletion of Nitrite by Lactic Acid Bacteria Isolated from Commercial Kimchi (시판 김치 분리 젖산균에 의한 아질산염 소거)

  • Ko, Jung-Lim;Oh, Chang-Kyung;Oh, Myung-Cheol;Kim, Soo-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.892-901
    • /
    • 2009
  • This study confirmed depletion efficiency of nitrite when incubate lactic acid bacteria was isolated from commercial Chinese cabbage pickles (Baechu kimchi), pickled ponytail radishes (Chongkak kimchi), radish cube kimchi (Kaktugi) and pickled Wakegi (Pa kimchi) at temperatures of $15^{\circ}C$ and $25^{\circ}C$. At $15^{\circ}C$, lactic acid bacteria isolated from commercial kimchi depleted nitrite actively except Leuconostoc mesenteroides subsp. mesenteroides and Leuconostoc paramesenteroides. In particular, Leuconostoc mesenteroides subsp. dextrinicum and Leuconostoc lactis depleted nitrite by very actively without period adaptation in nitrite. Lactobacillus sake, Lactobacillus plantarum, Lactobacillus casei subsp. pseudoplantarum, and Lactobacillus coryniformis subsp. torquens depleted nitrite very actively after 1 day. L. mesenteroides subsp. mesenteroides depleted nitrite relatively actively after 2 days pass. In contrast, L. paramesenteroides displayed very low nitrite depletion ratio compared to other species. At $25^{\circ}C$, all lactic acid bacteria isolated from commercial kimchi did not need adapting period in nitrite, and depleted nitrite very actively except L. paramesenteroides. Also, all lactic acid bacteria except L. mesenteroides subsp. mesenteroides and L. paramesenteroides nitrite of more than 90% after 1 day, and L. mesenteroides subsp. mesenteroides depleted nitrite of more than 90% after 2 days. However, because L. paramesenteroides was not active even at $25^{\circ}C$, nitrite depletion efficiency was very low compared to other species. On the other hand, the same species of Lactobacilli and Leuconostocs except L. mesenteroides subsp. mesenteroides and L. paramesenteroides of other kimchi origin at $15^{\circ}C$ as well as $25^{\circ}C$ by vitality depleted nitrite very actively without statistically significant difference (p<0.05).

Molecular Analysis of Colonized Bacteria in a Human Newborn Infant Gut

  • Park Hee-Kyung;Shim Sung-Sub;Kim Su-Yung;Park Jae-Hong;Park Su-Eun;Kim Hak-Jung;Kang Byeong-Chul;Kim Cheol-Min
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.345-353
    • /
    • 2005
  • The complex ecosystem of intestinal micro flora is estimated to harbor approximately 400 different microbial species, mostly bacteria. However, studies on bacterial colonization have mostly been based on culturing methods, which only detect a small fraction of the whole microbiotic ecosystem of the gut. To clarify the initial acquisition and subsequent colonization of bacteria in an infant within the few days after birth, phylogenetic analysis was performed using 16S rDNA sequences from the DNA iso-lated from feces on the 1st, 3rd, and 6th day. 16S rDNA libraries were constructed with the amplicons of PCR conditions at 30 cycles and $50^{\circ}C$ annealing temperature. Nine independent libraries were produced by the application of three sets of primers (set A, set B, and set C) combined with three fecal samples for day 1, day 3, and day 6 of life. Approximately 220 clones ($76.7\%$) of all 325 isolated clones were characterized as known species, while other 105 clones ($32.3\%$) were characterized as unknown species. The library clone with set A universal primers amplifying 350 bp displayed increased diversity by days. Thus, set A primers were better suited for this type of molecular ecological analysis. On the first day of the life of the infant, Enterobacter, Lactococcus lactis, Leuconostoc citreum, and Streptococcus mitis were present. The largest taxonomic group was L. lactis. On the third day of the life of the infant, Enterobacter, Enterococcus faecalis, Escherichia coli, S. mitis, and Streptococcus salivarius were present. On the sixth day of the life of the infant, Citrobacter, Clostridium difficile, Enterobacter sp., Enterobacter cloacae, and E. coli were present. The largest taxonomic group was E. coli. These results showed that microbiotic diversity changes very rapidly in the few days after birth, and the acquisition of unculturable bacteria expanded rapidly after the third day.

Bioconversion of nitrogen oxides and reduction of ferric ions by probiotic lactic acid bacteria (프로바이오틱스 유산균에 의한 질소 산화물 전환 및 철 이온 환원활성)

  • Kim, Selim;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.785-791
    • /
    • 2021
  • Many lactic acid bacteria (LAB) have probiotic properties that exert various health benefits. In this study, the reduction potential of nitrogen oxide compounds and ferric ions by six LAB, including Lactobacillus kimchicus, L. lactis, L. casei, L. plantarum, L. rhamnosus GG, and Leuconostoc mesenteroides were evaluated. The L. kimchicus strain produced a substantial amount of nitrite reduced from nitrate added to the media, whereas the other five LAB strains did not. L. kimchicus also showed the most potent reducing activity of ferric to ferrous ions. However, the reduction potential of the autoclaved L. kimchicus was little pronounced. The scavenging activities of viable LAB or their cell lysates against different radicals were not consistent with the potency of the LAB's reducing ability. The present results indicate that L. kimchicus has a strong reduction potential for nitrogen oxides in viable status, and that this ability can be used as a probiotic property for various health benefits.

Catabolic Enzyme Activities and Physiological Functionalities of Lactic Acid Bacteria Isolated from Korean Traditional Meju (재래식 메주에서 분리한 유산균들의 각종 효소활성 및 기능성)

  • Jeong, Ji-Kang;Zheng, Yanfei;Choi, Hye-Sun;Han, Gwi-Jung;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.12
    • /
    • pp.1854-1859
    • /
    • 2010
  • Three kinds of Korean traditional Meju were selected and the counts of microorganisms in these Meju were determined. The counts of total aerobic bacteria, lactic acid bacteria and yeasts and molds were 107~108, 106~108 and 107~108 cfu/g, respectively in three Meju and lactic acid bacteria were important microorganisms in the fermentation of Meju. Therefore, we isolated three kinds of dominant lactic acid bacteria from these Meju. They were identified as Leuconostoc mesenteroides (98%, Lm-SMm), Lactobacillus plantarum (99%, Lp-SMm) and Lactococcus lactis (98%, Ll-GAm). Then, enzyme activities and physiological functionalities of three lactic acid bacteria were investigated. Protease, lipase and $\alpha$-amylase activities were detected in three lactic acid bacteria, Ll-GAm showed relatively higher activities than other two lactic acid bacteria. Lm-SMm, Lp-SMm and Ll-GAm showed 45, 48 and 60% of antioxidative activity to 1,1-diphenyl-2-picryhydrazyl (DPPH), and exhibited 45, 67 and 70% of inhibitory effects in HT-29 human colon cancer cells, respectively. These results indicate that three lactic acid bacteria isolated from traditional Meju, especially Ll-GAm are applicable to Meju preparation for soybean paste industry.