• Title/Summary/Keyword: Lens transmittance

Search Result 114, Processing Time 0.018 seconds

Physical Properties of Styrene Copolymer and Contact Lens Application (스타이렌 공중합체의 물리적 특성 및 콘택트 렌즈로의 응용)

  • Kim, Tae-Hun;Ye, Ki-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.755-760
    • /
    • 2009
  • Styrene is broadly used as a polymer and a copolymer and is useful in manufacturing contact lenses due to its high refractive index. This study used styrene with the cross-linker EGDMA (ethylene glycol dimethacrylate), HEMA (2-hydroxyethyl methacrylate) and the initiator AIBN (azobisisobutyronitrile) for copolymerization. Measurement of the physical characteristics of the copolymerized material showed that the refractive index is 1.4412 - 1.4628, water content 20 - 35%, visible transmittance 82.6 - 87% and the tensile strength 0.143 - 0.344 Kgf. Also, measurements showed that the refractive index and tensile strength increased while the water content decreased as the ratio of styrene increased. Based on the results of this study, the produced copolymer can be estimated to be suitable for use as a material for high performance functional contact lenses.

Polymerization and Optical Properties of Polymers with High Tensile Strength Added Isocyanate Group

  • Sung, A-Young;Ye, Ki-Hun
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Polyurethane resin containing isocyanate is marked by excellent tensile and mechanical strengths and this test aims to gauge its applicability as a medical high polymer. Tris [2-(acryloyloxy)ethyl]isocyanurate and hexamethylenediisocyanate were added to a basic mixing ratio of HEMA (2-hydroxyethyl methacrylate), MMA (methyl methacrylate), NVP (n-vinyl-2-pyrrolidone) and crosslink agent, EGDMA (ethylene glycol dimethacrylate) with increasing proportions and copolymerized respectively. Also, the basic physical properties of the polymerized high polymers including refraction rate, tensile strength, light transmission and water content were measured to confirm that they are appropriate as hydrogelcontact lenses. After measuring the physical properties of high performance polymers produced by adding tris [2-(acryloyloxy) ethyl]isocyanurate, it was found that the average tensile strengths of sample TRIS1 to TRIS10 were between 0.285 and 0.612 kgf, while the average values of refractive index were ranged from 1.441 to 1.449 with water content from 30.00 to 37.35%.The measurement of physical properties of the copolymers generated by adding hexamethylenediisocyanate showed that the average tensile strength of sample HEXA1 to HEXA10 ranged from 0.267 to 1.742 kgf, the refractive index ranged from 1.443 to 1.475 and water contents were in the range of 21.22 to 35.58%. In all combinations the transmission rates satisfied the transmittance of general hydrogel contact lenses. From theresults, it is possible to conclude that the produced copolymers can be used as contact lens materials with excellent tensile strength.

Synthesis of a Polymer Containing HEMA and Gold and Silver Nanoparticles and its Application in Contact Lenses (HEMA와 금 및 은 나노입자를 포함한 고분자의 합성 및 콘택트렌즈로의 응용)

  • Ye, Ki-Hun;Kim, Tae-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.2
    • /
    • pp.228-233
    • /
    • 2010
  • Recently, nanoparticles of gold and silver has been applied to various fields due to antimicrobial property. This study added Ag and Au nanoparticles in HEMA (2-hydroxyethylmethacrylate), NVP (N-vinyl pyrrolidone) and MMA (methylmethacrylate) and copolymerized the solution by heating at $70^{\circ}C$ for 40 minutes, $80^{\circ}C$ for 40 minutes, and finally, $100^{\circ}C$ for 40 minutes. Using the polymer produced through the copolymerization process, and measured the physical characteristics which showed water content of 28.43% ~ 35.27%, refractive index of 1.429 ~ 1.440, visible transmittance of 79.2% ~ 86.5% and tensile strength of 0.125 kgf ~ 0.201 kgf. We judged that we made the copolymer with antimicrobial and physical properties which is suitable for conventional contact lens.

Photocatalyst characteristic of WO3 thin film with sputtering process (스퍼터링법에 의해 제작된 WO3 박막의 광분해 특성)

  • Lee, Boong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.420-424
    • /
    • 2016
  • In this study, we developed photocatalytic technology to address the emerging serious problem of air pollution through indoor air cleaning. A single layer of $WO_3$ was prepared by using the dry process of general RF magnetron sputtering. At a base vacuum of $1.8{\times}10^{-6}$[Torr], the optical and electrical properties of the resulting thin films were examined for use as a transparent electrode as well as a photocatalyst. The single layer of $WO_3$ prepared at an RF power of 100 [W], a pressure of 7 [mTorr] and Ar and $O_2$ gas flow rates of 70 and 2 sccm, respectively, showed uniform and good optical transmittance of over 80% in the visible wavelength range from 380 [nm] to 780 [nm]. The optical catalyst characteristics of the $WO_3$ thin film were examined by investigating the optical absorbance and concentration variance in methylene blue, where the $WO_3$ thin film was immersed in the methylene blue. The catalytic characteristics improved with time. The concentration of methylene blue decreased to 80% after 5 hours, which confirms that the $WO_3$ thin film shows the characteristics of an optical catalyst. Using the reflector of a CCFL (cold cathode fluorescent lamp) and the lens of an LED (lighting emitting diode), it is possible to enhance the air cleaning effect of next-generation light sources.