DOI QR코드

DOI QR Code

Physical Properties of Styrene Copolymer and Contact Lens Application

스타이렌 공중합체의 물리적 특성 및 콘택트 렌즈로의 응용

  • Kim, Tae-Hun (Department of Ophthalmic Optics, Daebul University) ;
  • Ye, Ki-Hun (Department of Ophthalmic Optics, Daebul University) ;
  • Sung, A-Young (Department of Ophthalmic Optics, Daebul University)
  • 김태훈 (대불대학교 안경광학과) ;
  • 예기훈 (대불대학교 안경광학과) ;
  • 성아영 (대불대학교 안경광학과)
  • Published : 2009.12.20

Abstract

Styrene is broadly used as a polymer and a copolymer and is useful in manufacturing contact lenses due to its high refractive index. This study used styrene with the cross-linker EGDMA (ethylene glycol dimethacrylate), HEMA (2-hydroxyethyl methacrylate) and the initiator AIBN (azobisisobutyronitrile) for copolymerization. Measurement of the physical characteristics of the copolymerized material showed that the refractive index is 1.4412 - 1.4628, water content 20 - 35%, visible transmittance 82.6 - 87% and the tensile strength 0.143 - 0.344 Kgf. Also, measurements showed that the refractive index and tensile strength increased while the water content decreased as the ratio of styrene increased. Based on the results of this study, the produced copolymer can be estimated to be suitable for use as a material for high performance functional contact lenses.

Styrene은 중합체와 공중합체로 널리 사용되어져 왔으며, 고 굴절률을 가지고 있기 때문에 콘택트렌즈 재료로 유용하게 사용된다. 본 연구는 styrene을 교차결합제인 EGDMA (ethylene glycol dimethacrylate)와 HEMA (2-hydroxyethyl methacrylate) 그리고 개시제인 AIBN (azobisisobutyronitrile)을 사용하여 공중합 하였다. 공중합한 안 의료용 재료의 물리적 특성을 측정한 결과 굴절률 1.4412-1.4628, 함수율 20-35%, 가시광선 투과율 82.6-87.0%, 인장강도 0.143-0.344 Kgf를 나타내었다. Styrene의 비율이 증가할수록 굴절률과 인장강도는 증가하였으며, 함수율은 감소하였다. 본 실험결과로 볼 때 생성된 공중합체는 기능성을 가진 고성능 콘택트렌즈 재료로 사용될 수 있을 것으로 판단된다.

Keywords

References

  1. Ye, K. H.; Kim, T. H.; Sung, A. Y. Korean J. Vis. Sci. 2008, 9, 459
  2. Kim, T. H.; Ye, K. H.; Kwon, Y. S.; Sung, A. Y. J. Korean Oph. Opt. Soc. 2006, 11(3), 259
  3. Ye, K. H.; Kim, T. H.; Sung, A. Y. Korean J. Vis. Sci. 2008, 13(3), 29
  4. Kim, T. H.; Ye, K. H.; Kwon, Y. S.; Sung, A. Y. J. Korean Oph. Opt. Soc. 2006, 11(2), 143
  5. Kim, T. H.; Sung, A. Y. J. Kor. Chem. Soc. 2009, 53(3), 340 https://doi.org/10.5012/jkcs.2009.53.3.340
  6. Ye, K. H.; Cho, S. H.; Sung, A. Y. J. Kor. Chem. Soc. 2009, 53(5), 542 https://doi.org/10.5012/jkcs.2009.53.5.542
  7. Ye, K. H.; Sung, A. Y. J. Kor. Chem. Soc. 2009, 53(3), 335 https://doi.org/10.5012/jkcs.2009.53.3.335
  8. Kim, T. H.; Sung, A. Y. J. Kor. Chem. Soc. 2009, 53(5), 547 https://doi.org/10.5012/jkcs.2009.53.5.547
  9. Brennan N. A.; Eforn N.; Holden B. A. et al. Ophthalmic Physiol. Opt. 1987, 7, 485 https://doi.org/10.1111/j.1475-1313.1987.tb00783.x
  10. Fatt, I. Optician 1985, 190, 25
  11. Brennan, N. A.; Eforn, N.; Holden, B. A. Clin. Exp. Optom. 1986, 69, 82 https://doi.org/10.1111/j.1444-0938.1986.tb06794.x
  12. Brennan, N. A. Int. Contact Lens Clin. 1983, 10, 357
  13. Mousa, G. Y.; Callender, M. G.; Sivak, J. G.; Edan, D. J. Int. Contact Lens Clin. 1983, 10, 31

Cited by

  1. Esterification of Methacrylic acid with Ethylene glycol over Heteropolyacid supported on ZSM-5 vol.55, pp.1, 2011, https://doi.org/10.5012/jkcs.2011.55.1.014
  2. Synthesis and Physical Properties of Ophthalmic Copolymer Containing 4-fluorostyrene vol.54, pp.3, 2010, https://doi.org/10.5012/jkcs.2010.54.3.317
  3. Study on the Ophthalmic Lens Materials with High Refractive Index Containing Vinylanisole vol.54, pp.6, 2010, https://doi.org/10.5012/jkcs.2010.54.6.755
  4. Hydrogel Lens Application of 3-Vinylaniline with High Refractive Index vol.55, pp.1, 2011, https://doi.org/10.5012/jkcs.2011.55.1.141
  5. Changes in Drug Elution Concentration and Physical Characteristics of Soft Contact Lenses Depending on the Initiator and Crosslinker vol.19, pp.2, 2014, https://doi.org/10.14479/jkoos.2014.19.2.145
  6. Optical application of poly(HEMA-co-MMA) containing silver nanoparticles and N,N-dimethylacrylamide vol.29, pp.5, 2012, https://doi.org/10.1007/s11814-011-0231-1
  7. Analysis of Physical Properties of Hydrogel Lenses Polymer Containing Styrene and PVP vol.29, pp.7, 2019, https://doi.org/10.3740/mrsk.2019.29.7.399
  8. Compatibility of POSS Composites with Silicone Monomers and Application to Contact Lenses Material vol.64, pp.6, 2009, https://doi.org/10.5012/jkcs.2020.64.6.354