• Title/Summary/Keyword: Lens system design

Search Result 396, Processing Time 0.026 seconds

Development of underwater 3D shape measurement system with improved radiation tolerance

  • Kim, Taewon;Choi, Youngsoo;Ko, Yun-ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1189-1198
    • /
    • 2021
  • When performing remote tasks using robots in nuclear power plants, a 3D shape measurement system is advantageous in improving the efficiency of remote operations by easily identifying the current state of the target object for example, size, shape, and distance information. Nuclear power plants have high-radiation and underwater environments therefore the electronic parts that comprise 3D shape measurement systems are prone to degradation and thus cannot be used for a long period of time. Also, given the refraction caused by a medium change in the underwater environment, optical design constraints and calibration methods for them are required. The present study proposed a method for developing an underwater 3D shape measurement system with improved radiation tolerance, which is composed of commercial electric parts and a stereo camera while being capable of easily and readily correcting underwater refraction. In an effort to improve its radiation tolerance, the number of parts that are exposed to a radiation environment was minimized to include only necessary components, such as a line beam laser, a motor to rotate the line beam laser, and a stereo camera. Given that a signal processing circuit and control circuit of the camera is susceptible to radiation, an image sensor and lens of the camera were separated from its main body to improve radiation tolerance. The prototype developed in the present study was made of commercial electric parts, and thus it was possible to improve the overall radiation tolerance at a relatively low cost. Also, it was easy to manufacture because there are few constraints for optical design.

Optical Design of a Subminiature Catadioptric Omnidirectional Optical System with an LED Illumination System for a Capsule Endoscope (LED 조명계를 결합한 캡슐내시경용 초소형 반사굴절식 전방위 광학계의 설계)

  • Moon, Tae Sung;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.68-78
    • /
    • 2021
  • A subminiature catadioptric omnidirectional optical system (SCOOS) with 2 mirrors, 6 plastic aspherical lenses, and an illumination system of 6 light emitting diodes, to observe the 360° panoramic image of the inner intestine, is optically designed and evaluated for a capsule endoscope. The total length, overall length, half field of view (HFOV), and F-number of the SCOOS are 14.3 mm, 8.93 mm, 51°~120°, and 3.5, respectively. The optical system has a complementary metal-oxide-semiconductor sensor with 0.1 megapixels, and an illumination system of 6 light-emitting diodes (LEDs) with 0.25 lm to illuminate on the 360° side view of the intestine along the optical axis. As a result, the spatial frequency at the modulation transfer function (MTF) of 0.3, the depth of focus, and the cumulative probability of tolerance at the Nyquist frequency of 44 lp/mm and MTF of 0.3 of the optimized optical system are obtained as 130 lp/mm, -0.097 mm to +0.076 mm, and 90.5%, respectively. Additionally, the simulated illuminance of the LED illumination system at the inner surface of the intestine within HFOV, at a distance of 15.0 mm from the optical axis, is from a minimum of 315 lx to a maximum of 725 lx, which is a sufficient illumination and visibility.

The Design of an Intelligent Assembly Robot System for Lens Modules of Phone Camera.

  • Song, Jun-Yeob;Lee, Chang-Woo;Kim, Yeong-Gyoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.649-652
    • /
    • 2005
  • The camera cellular phone has a large portion of cellular phone market in recent year. The variety of a customer demand makes a fast model change and the spatial resolution is changed from VGA to multi-mega pixel. The 1.3 mega pixel (MP) camera cellular phone was first released into the Korean market in October 2003. The major cellular phone companies released a 2MP camera cellular phone that supports zoom function and a 2MP camera cellular phone is settled down with the Korea cellular phone market. It makes a keen competition in price and demands automation for phone camera module. There is an increasing requirement for the automatic assembly to correspond to a fast model change. The hard automation techniques that rely on dedicated manufacturing system are too inflexible to meet this requirement. Therefore in this study, this system is designed with the flexibility concept in order to cope with phone camera module change. The system has a same platform that has X-Y-Z motion or X-Z motion with ${\mu}m$order accuracy. It has a special gripper according to the type of a component to be put together. If the camera model changes, the gripper may be updated to fit for the camera module. The controller of this system acquires the data sets that have the information about the assembly part by the tray. This information is obtained ahead of an inspection step. The controller excludes an inferior part to be assembled by using this information to diminish the inferior goods. The assembly jig used in this system has a function of self adjustment that reduces the tact time and also diminish the inferior goods. Finally, the intelligent assembly system for phone camera module will be designed to get a flexibility to meet model change and a high productivity with a high reliability.

  • PDF

Study on Modeling and Experiment of Optical Three Axis Tool-Origin Sensor for Applications of Micro Machine-Tools (초소형 공작기계 적용을 고려한 광학식 3 축 공구원점 센서 모델링 및 실험에 관한 연구)

  • Shin, Woo-Cheol;Lee, Hyeon-Hwa;Ro, Seung-Kook;Park, Jong-Kweon;Noh, Myoung-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.68-73
    • /
    • 2009
  • One of the traditional optical methods to monitor a tool is a CCD sensor-based vision system which captures an aspect of the tool in real time. In the case using the CCD sensor, specific lens-modules are necessary to monitor the tool with higher resolution than its pixel size, and a microprocessor is required to attain desired data from captured images. Thus theses additional devices make the entire measurement system complex. Another method is to use a pair of an optical source and a detector per measuring axis. Since the method is based on the intensity modulation, the structure of the measurement system is simper than the CCD sensor-based vision system. However, in the case measuring the three dimensional position of the tool, it is difficult to apply to micro machine-tools because there may not be space to integrate three pairs of an optical source and a detector. In this paper, in order to develop a tool-origin measurement system which is employed in micro machine-tools, the improved method to measure a tool origin in x, y and z axes is introduced. The method is based on the intensity modulation and employs one pair of an optical source radiating divergent beams and a quadrant photodiode to detect a three dimensional position of the tool. This paper presents the measurement models of the proposed tool-origin sensor. The models were verified experimentally The verification results show that the proposed method is possible and the induced models are available for design.

DESIGN OF THE OPTICAL SYSTEM FOR A PROTOMODEL OF SPACE INFRARED CRYOGENIC SYSTEM (우주탑재용 적외선카메라 시험모델의 광학계 설계)

  • Lee, Dae-Hee;Pak, Soo-Jong;Yuk, In-Soo;Nam, Uk-Won;Jin, Ho;Lee, Sung-Ho;Han, Jeong-Yeol;Yang, Hyung-Suk;Kim, Dong-Lak;Kim, Geon-Hee;Park, Seong-Je;Kim, Byung-Hyuk;Jeong, Han
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.473-482
    • /
    • 2005
  • Many technical challenges are being tried for a large space infrared telescope, which is one of the major objectives of the Strategic Technology Road Map (STRM) of KASI (Korea Astronomy and Space Science Institute), As one of these challenges, KASI and KBSI (Korea Basic Science Institute) have started a cooperation project for developing a space infrared cryogenic system with KIMM (Korea Institute of Machinery as Materials) and i3system co. In this paper, we generate optical requirements for the Protomodel of Space Infrared Cryogenic System (PSICS), and design a single lens optical system with a bandpass of $3.8\~4.8{\mu}m$, a field of view of $15^{\circ}\times12^{\circ}$, and an angular resolution of $0.047^{\circ}$, to develop a further complex optical system.

Tolerance design of position accuracy of optical components for micro optical system (마이크로 광 시스템 구현을 위한 광학 부품의 위치 정밀도 허용오차 설계)

  • 이재영;황병철;박헌용;박세근;이승걸;오범환;이일항;최두선
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.13-20
    • /
    • 2004
  • In order to set up the design of micro optical bench, optical coupling efficiencies of two sets of test benches are calculated. Simple linear connections of incoming and outgoing optical fibers with and without ball lenses are designed. Positional errors that are possible in actual fabrication processes we considered in the calculations and their tolerances are determined from -3 ㏈ conditions. For a simple fiber-to-fiber connection, the lateral misalignment should be limited to 2.7 um and tilt error 5.8o. In case of the fiber-to-fiber with ball lens, the working distance between fibers can be extended over 60 um. The optical coupling efficiency depends strongly on the positional errors of ball lenses along the optical axis, and it is also found that the lateral and vertical positional errors should be considered simultaneously in order to keep the high coupling efficiency.

A Study on Aspheric Optics European LED Streetlights Type for the Prevention of Light Pollution (빛 공해 방지를 위한 유럽형 LED 가로등용 비구면 광학계에 관한 연구)

  • Lee, Shi-Woo;Lee, Chang-Soo;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.429-436
    • /
    • 2013
  • In this study, we researched a pendant-type aspherical optical system, which could be applied to street lighting and security lighting in Europe. The goal of this research was eco-friendly artificial lighting that could be used for the one-to-one replacement of ordinary lighting. LED lighting was miniaturized by using one COB LED Module and one aspherical optical system, which could control the luminosity of the LED. Through the aspherical optical system, the light distribution angle could be controlled in a range of $140^{\circ}$ for the X-axis and $40^{\circ}$ for the Y-axis. This means that this optical system is appropriate for catenary-type lighting, which is widely used in Europe on both narrow and broad roads. The performance was determined using a lighting simulation program. This lighting system simulation showed that road rates M4 and M5 could be satisfied, with the condition of a 13-m height and 50-m distance (U0 and TI). The simulation program estimated that light pollution, which disturbs sleep, could beeliminated in the European streetlight case. Determining methods for the light distribution control, performance, and optimal lighting setup conditions is very important to prevent light pollution. Moreover, the initial step of developing the lighting system design and post management will require an effort with much analysis.

Optical Fiber Daylighting System Combined with LED Lighting and CPV based on Stepped Thickness Waveguide for Indoor Lighting

  • Vu, Ngoc Hai;Shin, Seoyong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.488-499
    • /
    • 2016
  • We present a design and optical simulation of a cost-effective hybrid daylighting/LED system composed of mixing sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting. In this approach, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The proposed sunlight collector consists of a Fresnel lens array. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. The visible rays passing through the beam splitters are coupled to a stepped thickness waveguide (STW) by tilted mirrors and confined by total internal reflection (TIR). LEDs are integrated at the end of the STW to improve the lighting quality. LEDs’ light and sunlight are mixed in the waveguide and they are coupled into an optical fiber bundle for indoor illumination. An optical sensor and lighting control system are used to control the LED light flow to ensure that the total output flux for indoor lighting is a fixed value when the sunlight is inadequate. The daylighting capacity was modeled and simulated with a commercial ray tracing software (LighttoolsTM). Results show that the system can achieve 63.8% optical efficiency at geometrical concentration ratio of 630. A required accuracy of sun tracking system achieved more than ±0.5o . Therefore, our results provide an important breakthrough for the commercialization of large scale optical fiber daylighting systems that are faced with challenges related to high costs.

Performance Comparison Study on LFLP and DBLP Daylighting System (LFLP와 DBLP 자연채광시스템의 성능평가 비교 연구)

  • Choi, Jeon-Yong;Kang, Eun-Chul;Lee, Euy-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.799-804
    • /
    • 2011
  • The LFLP (Linear Fresnel Light Pipe) system uses a linear Fresnel lens to follow the sun and concentrates the parallel sunlight into a line. A LFLP daylighting system has been developed and updated to a DBLP (Double Blind Light Pipe) daylighting system to improve the overall system efficiency in the morning and afternoon. The new design consists of a double-blind style with a cone-shaped light transformer. The blinds are used to collect the sun's altitude and azimuth movements through the day. Behind the two sets of blinds is the light transformer, which is based on a parabolic-shaped light concentrator. The light transformer is designed to efficiently deliver light within a thirty-degree radial spread so that the light pipe can internally reflect the light. The results of scale-model tests are encouraging, and the efficiency is three times higher than that of the previous LFLP system.

A Study on 3-Dimensional Surface Measurement using Confocal Principle (공초점 원리를 이용한 3차원 표면형상 측정에 관한 연구)

  • Kang, Young-June;Song, Dae-Ho;You, Weon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.169-176
    • /
    • 2001
  • In modern industry, the accuracy and the sulfate-finish requirements for machined parts have been becoming ever more stringent. In addition, the measurement and understanding of surface topography is rapidly attracting the attention of the physicist and chemist as well as the engineer. Optical measuring method is used in vibration measurement, crack and defect detection with the advent of opto-mechatronics, and it is expected to play an important role in surface topography. In this study, the principle of confocal microscope is described, and the advanced 3-D surface measuring system that has better performance than the traditional confocal microscope is developed. Suitable fixtures arc developed and integrated with the computer system for generating 3-D surface and form data. Software for data acquisition and analysis of various parameters in surface geometrical features has been developed.

  • PDF