• Title/Summary/Keyword: Length Dimension

Search Result 665, Processing Time 0.022 seconds

Prediction of Natural Frequency via Change in Design Variable on Connection Area of Lap Joint (겹치기 이음부의 설계변수 변화에 따른 고유진동수의 예측)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.57-62
    • /
    • 2019
  • This paper describes the prediction of eigenfrequencies due to changes in stiffness and mass in the connection area of the lap joint beam in terms of linear and torsional stiffness as well as connection length. The sensitivities of mass and stiffness in the finite element model were derived by using the first-order differential and algebraic equation and were thereafter applied to obtain new natural frequencies that were compared with theoretical exact solutions. Newly predicted natural frequencies due to only a change in stiffness were in relatively good agreement with those in lower modes for rigid joints, while further investigation was needed for flexible joints. On the other hand, only the change in mass resulted in a large discrepancy in the flexible joint case. It may be strongly anticipated that this study will provide a useful tool for estimating modal parameters by change in any design variable, such as the structural dimension, material property, or connection type for a large-scale structure, even though the proposed methodology is currently limited to a jointed beam.

The measurement of nose dimensions through the three-dimensional reformation images after nasal bone fracture

  • Jang, Seung Bin;Han, Dong Gil
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.1
    • /
    • pp.31-36
    • /
    • 2019
  • Background: After closed reduction, patients are sometimes concerned that their external nasal shapes have changed. The aim of this study was to investigate and explain changes in nasal shape after surgery through objective photogrammetric anthropometry measurements taken through three-dimensional (3D) reformed computed tomography (CT) images. Methods: Our study included 100 Korean patients who underwent closed reduction of isolated nasal bone fracture from January 2016 to June 2017. Using the ruler tool in Adobe Photoshop CS3, we measured preoperative and postoperative nasal base heights, long nostril axis lengths, both nasal alar angles, and amount of nasal deviation through the 3D reformation of soft tissue via CT scans. We then compared the dimension of nose. Results: The amount of postoperative correction for nasal base height was 1.192 mm. The differences in nostril length between each side were found to be 0.333 mm preoperatively and 0.323 mm postoperatively. The differences in the nasal alar angle between each side was $1.382^{\circ}$ preoperatively and $1.043^{\circ}$ postoperatively. The amount of nasal deviation was found to be 5.248 mm preoperatively and 1.024 mm in postoperatively. Conclusion: After the reduction of nasal bone fractures, changes in nasal dimensions were noticeable in terms of nasal deviation but less significant in nasal tips, except for changes in nasal alar angles, which were notable.

Design of Brassiere Pattern for Big Size Breast Women -Based on 3D Breast Scanning Data- (유방이 큰 여성을 위한 브래지어 패턴 설계 -3차원 유방 형상 자료를 중심으로-)

  • Han, Chohee;Yi, Kyong-Hwa
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.2
    • /
    • pp.204-214
    • /
    • 2019
  • A CAD program has recently been introduced that can be directly developed into a three-dimensional human body shape and made into a pattern. It is possible to fabricate a bra that reflects the volume and surface area of the breast; however, it still needs to be verified. This study investigates the average size and shape of 20 big-breasted women and designs a brassiere pattern for women with large breasts using a 3D Flattening function of OptiTex PDS v15.6. In addition, the study verifies the reliability of the proposed method compared to a conventional brassiere pattern. The study results are as follows. First, the three dimensional measurement values were smaller than the direct measurement dimensions when the three dimension measurement dimensions of the subjects were compared with the direct measurement dimensions, the replica measurement dimensions and the three dimensional measurement dimensions. Second, the 3D flattening pattern reflects the actual shape, length, and area of the actual breast when comparing a brassiere pattern using a 3D shape and pattern reflecting the direct measurement.

Soil vibration induced by railway traffic around a pile under the inclined bedrock condition

  • Ding, Xuanming;Qu, Liming;Yang, Jinchuan;Wang, Chenglong
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.143-156
    • /
    • 2021
  • Rail transit lines usually pass through many complicated topographies in mountain areas. The influence of inclined bedrock on the train-induced soil vibration response was investigated. Model tests were conducted to comparatively analyze the vibration attenuation under inclined bedrock and horizontal bedrock conditions. A three-dimension numerical model was built to make parameter analysis. The results show that under the horizontal bedrock condition, the peak velocity in different directions was almost the same, while it obviously changed under the inclined bedrock condition. Further, the peak velocity under inclined bedrock condition had a larger value. The peak velocity first increased and then decreased with depth, and the trend of the curve of vibration attenuation with depth presented as a quadratic parabola. The terrain conditions had a significant influence on the vibration responses, and the inclined soil surface mainly affected the shallow soil. The influence of the dip angle of bedrock on the peak velocity and vibration attenuation was related to the directions of the ground surface. As the soil thickness increased, the peak velocity decreased, and as it reached 173% of the embedded pile length, the influence of the inclined bedrock could be neglected.

Vibration of multilayered functionally graded deep beams under thermal load

  • Bashiri, Abdullateef H.;Akbas, Seref D.;Abdelrahman, Alaa A.;Assie, Amr;Eltaher, Mohamed A.;Mohamed, Elshahat F.
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.545-557
    • /
    • 2021
  • Since the functionally graded materials (FGMs) are used extensively as thermal barriers in many of applications. Therefore, the current article focuses on studying and presenting dynamic responses of multilayer functionally graded (FG) deep beams placed in a thermal environment that is not addressed elsewhere. The material properties of each layer are proposed to be temperature-dependent and vary continuously through the height direction based on the Power-Law function. The deep layered beam is exposed to harmonic sinusoidal load and temperature rising. In the modelling of the multilayered FG deep beam, the two-dimensional (2D) plane stress continuum model is used. Equations of motion of deep composite beam with the associated boundary conditions are presented. In the frame of finite element method (FEM), the 2D twelve-node plane element is exploited to discretize the space domain through the length-thickness plane of the beam. In the solution of the dynamic problem, Newmark average acceleration method is used to solve the time domain incrementally. The developed procedure is verified and compared, and an excellent agreement is observed. In numerical examples, effects of graduation parameter, geometrical dimension and stacking sequence of layers on the time response of deep multilayer FG beams are investigated with temperature effects.

An Analysis of Hand Measurements for Designing Size Specification for Children's Gloves (아동용 장갑의 치수 규격 설계를 위한 손 치수 분석)

  • Jeon, Eunkyung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.6
    • /
    • pp.923-934
    • /
    • 2021
  • Most apparel products have national standards for sizing; however, for gloves, national sizing standards have not yet been established. This study aims to analyze children's hand dimensions and propose a size specification for children's gloves that shows children's hand-related size information. Among the 3D measurements of sixth Size Korea Project, the measurement data of 19 dimensions related to the hands of 1,057 boys and girls aged 7-13 years old were analyzed. The distribution and growth trend of hand measurements for boys and girls demonstrated considerable mean differences and distribution trends by gender and age as per hand dimensions, which leads to the conclusion that it is necessary to show these results in the children's glove design. Based on these results, the cross-distribution maps of children's hand length and hand circumference were drafted; furthermore, the distribution relationship with an adult hand size was identified. Based on the distribution of hand sizes, the distribution of adult hand sizes overlapped with children's hand sizes was verified, and children's glove size specifications were presented. The results can be used as useful data such as measures for setting the size range and sizing system for children's gloves.

Signal Number Estimation Algorithm Based on Uniform Circular Array Antenna

  • Heui-Seon, Park;Hongrae, Kim;Suk-seung, Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2023
  • In modern wireless communication systems including beamformers or location-based services (LBS), which employ multiple antenna elements, estimating the number of signals is essential for accurately determining the quality of the communication service. Representative signal number estimation algorithms including the Akaike information criterion (AIC) and minimum description length (MDL) algorithms, which are information theoretical criterion models, determine the number of signals based on a reference value that minimizes each criterion. In general, increasing the number of elements mounted onto the array antenna enhances the performance of estimating the number of signals; however, it increases the computational complexity of the estimation algorithm. In addition, various configurations of array antennas for the increased number of antenna elements should be considered to efficiently utilize them in a limited location. In this paper, we introduce an efficient signal number estimation algorithm based on the beamspace based AIC and MDL techniques that reduce the computational complexity by reducing the dimension of a uniform circular array antenna. Since this algorithm is based on a uniform circular array antenna, it presents the advantages of a circular array antenna. The performance of the proposed signal number estimation algorithm is evaluated through computer simulation examples.

Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM

  • Varun, Katiyar;Ankit, Gupta;Abdelouahed, Tounsi
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.621-640
    • /
    • 2022
  • In the present article, the vibration response of a geometrically imperfect bi-directional functionally graded plate (2D-FGP) with geometric discontinuities and micro-structural defects (porosities) has been investigated. A porosity model has been developed to incorporate the effective material properties of the bi-directional FGP which varies in two directions i.e. along the axial and transverse direction. The geometric discontinuity is also introduced in the plate in the form of a circular cut-out at the center of the plate. The structural kinematic formulation is based on the non-polynomial trigonometric higher-order shear deformation theory (HSDT). Finite element formulation is done using C° continuous Lagrangian quadrilateral four-noded element with seven degrees of freedom per node. The equations of motion have been derived using a variational approach. Convergence and validation studies have been documented to confirm the accuracy and efficiency of the present formulation. A detailed investigation study has been done to evaluate the influence of the circular cut-out, geometric imperfection, porosity inclusions, partial supports, volume fraction indexes (along with the thickness and length), and geometrical configurations on the vibration response of 2D-FGP. It is concluded that after a particular cut-out dimension, the vibration response of the 2D FGP exhibits non-monotonic behavior.

Simulation of High Vacuum Characteristics by VacTran Simulator

  • Kim, Hyung-Taek;Jeong, Hyeongwon
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.88-95
    • /
    • 2022
  • Vacuum simulation is associated with the prediction and calculation of how materials, pumps and systems will perform using mathematical equations. In this investigation, three different high vacuum systems were simulated and estimated with each vacuum characteristics by VacTran simulator. In each of modelled vacuum systems, selection of gas loads into vessel, combination of rough and high vacuum pumps and dimension of conductance elements were proposed as system variables. In pump station model, the pumping speed to pressures by the combination of root pump was analyzed under the variations of vessel volume. In this study, the effects of outgassing dependent on vessel materials was also simulated and aluminum vessel was estimated to optimum materials. It was obtained from the modelling with diffusion pump that the diameter, length of 50×250[mm]roughing line was characterized as optimum variables to reach the ultimate pressure of 10E-7[torr]. Optimum design factors for vacuum characteristics of modelled vacuum system were achieved by VacTran simulator. Feasibility of VacTran as vacuum simulator was verified and applications of VacTran in high tech process expected to be increased.

Effects of age of L2 acquisition and L2 experience on the production of English vowels by Korean speakers

  • Eunhae Oh;Eunyoung Shin
    • Phonetics and Speech Sciences
    • /
    • v.15 no.3
    • /
    • pp.9-16
    • /
    • 2023
  • The current study investigated the influence of age of L2 acquisition (AOA) and length of residence (LOR) in the L2 setting country on the production of voicing-conditioned vowel duration and spectral qualities in English by Korean learners. The primary aim was to explore the ways in which the language-specific phonetic features are acquired by the age of onset and L2 experience. Analyses of the archived corpus data produced by 45 native speakers of Korean showed that, regardless of AOA or LOR, absolute vowel duration was used as a salient correlate of voicing contrast in English for Korean learners. The accuracy of relative vowel duration was influenced more by onset age than by L2 experience, suggesting that being exposed to English at an early age may benefit the acquisition of temporal dimension. On the other hand, the spectral characteristics of English vowels were more consistently influenced by L2 experience, indicating that immersive experience in the L2 speaking environment are likely to improve the accurate production of vowel quality. The distinct influence of the onset age and L2 experience on the specific phonetic cues in L2 vowel production provides insight into the intricate relationship between the two factors on the manifestation of L2 phonological knowledge.