DOI QR코드

DOI QR Code

Vibration of multilayered functionally graded deep beams under thermal load

  • Bashiri, Abdullateef H. (Department of Mechanical Engineering, Faculty of Engineering, Jazan University) ;
  • Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University) ;
  • Abdelrahman, Alaa A. (Department of Mechanical Design & Production, Faculty of Engineering, Zagazig University) ;
  • Assie, Amr (Department of Mechanical Engineering, Faculty of Engineering, Jazan University) ;
  • Eltaher, Mohamed A. (Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Mohamed, Elshahat F. (Department of Mechanical Power, Faculty of Engineering, Zagazig University)
  • Received : 2020.09.12
  • Accepted : 2021.03.17
  • Published : 2021.03.25

Abstract

Since the functionally graded materials (FGMs) are used extensively as thermal barriers in many of applications. Therefore, the current article focuses on studying and presenting dynamic responses of multilayer functionally graded (FG) deep beams placed in a thermal environment that is not addressed elsewhere. The material properties of each layer are proposed to be temperature-dependent and vary continuously through the height direction based on the Power-Law function. The deep layered beam is exposed to harmonic sinusoidal load and temperature rising. In the modelling of the multilayered FG deep beam, the two-dimensional (2D) plane stress continuum model is used. Equations of motion of deep composite beam with the associated boundary conditions are presented. In the frame of finite element method (FEM), the 2D twelve-node plane element is exploited to discretize the space domain through the length-thickness plane of the beam. In the solution of the dynamic problem, Newmark average acceleration method is used to solve the time domain incrementally. The developed procedure is verified and compared, and an excellent agreement is observed. In numerical examples, effects of graduation parameter, geometrical dimension and stacking sequence of layers on the time response of deep multilayer FG beams are investigated with temperature effects.

Keywords

References

  1. Abdelrahman, A.A., Abd-El-Mottaleb, H.E. and Eltaher, M.A. (2020), "On bending analysis of perforated microbeams including the microstructure effects", Struct. Eng. Mech., 76(6), 765-779. http://doi.org/10.12989/sem.2020.76.6.765.
  2. Abdalrahmaan, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendi, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.
  3. Abdelrahman, A.A. and El-Shafei, A.G. (2020), "Modeling and analysis of the transient response of viscoelastic solids", Waves Random Complex Media, 1-31. https://doi.org/10.1080/17455030.2020.1714790.
  4. Abdelrahman, A.A., Mohamed, N.A. and Eltaher, M.A. (2020), "Static bending of perforated nanobeams including surface energy and microstructure effects", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-020-01149-x.
  5. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
  6. Abo-bakr, R.M., Abo-bakr, H.M., Mohamed, S.A. and Eltaher, M. A. (2020), "Optimal weight for buckling of FG beam under variable axial load using Pareto optimality", Compos. Struct., 113193. https://doi.org/10.1016/j.compstruct.2020.113193.
  7. Abo-bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2021a), "Multi-objective shape optimization for axially functionally graded microbeams", Compos. Struct., 258, 113370. https://doi.org/10.1016/j.compstruct.2020.113370.
  8. Abo-Bakr, H.M., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020b), "Weight optimization of axially functionally graded microbeams under buckling and vibration behaviors", Mech. Based Des. Struc., 1-22. https://doi.org/10.1080/15397734.2020.1838298 .
  9. Ahmadi, H. and Foroutan, K. (2019), "Effect of the multi vibration absorbers on the nonlinear FG beam under periodic load with various boundary conditions", J. Solid Mech., 11(3), 523-534. https://doi.org/10.22034/JSM.2019.666688.
  10. Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
  11. Akbas, S.D. (2017a), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
  12. Akbas, S.D. (2017b), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764.
  13. Akbas, S.D. (2018a), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1.
  14. Akbas, S.D. (2018b), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
  15. Akbas, S.D. (2018c), "Investigation on free and forced vibration of a bi-material composite beam", J. Polytechnic-Politeknik Dergisi, 21(1), 65-73. https://doi.org/10.21923/jesd.553328.
  16. Akbas, S.D. (2019a), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech., 5(2), 477-485. https://dx.doi.org/10.22055/jacm.2018.26819.1360.
  17. Akbas, S.D. (2019b), "Forced vibration analysis of functionally graded sandwich deep beams", Coupled Syst. Mech., 8(3), 259-271. https://doi.org/10.12989/csm.2019.8.3.259.
  18. Akbas, S.D., Fageehi, Y.A., Assie, E.A. and Eltaher, M.A. (2020a), "Dynamic analysis of visco-elastic functionally graded porous thick beams under pulse load", Eng. Comput., 1-18. https://doi.org/ 10.1007/s00366-020-01070-3.
  19. Akbas, S.D., Bashiri, H.A., Assie, A.E. and Eltaher, M.A. (2020b), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 1-12. https://doi.org/10.1177/1077546320947302.
  20. Albino, J.C.R., Almeida, C.A., Menezes, I.F.M. and Paulino, G.H. (2018), "Co-rotational 3D beam element for nonlinear dynamic analysis of risers manufactured with functionally graded materials (FGMs)", Eng. Struct., 173, 283-299. https://doi.org/10.1016/j.engstruct.2018.05.092.
  21. Almitani, K.H., Abdalrahmaan, A.A., Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643.
  22. Almitani, K.H., Abdalrahmaan, A.A. and Eltaher, M.A. (2020), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 643-655. https://doi.org/10.12989/scs.2020.35.4.555.
  23. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.
  24. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
  25. Arioui, O., Belakhdar, K., Kaci, A. and Tounsi, A. (2018), "Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials", Steel Compos. Struct., 27(6), 777-788. https://doi.org/10.12989/scs.2018.27.6.777.
  26. Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Behavior of a viscoelastic composite plates under transient load", J. Mech. Sci. Technol., 25(5), 1129. https://doi.org/10.1007/s12206-011-0302-6.
  27. Assie, A., Akbas, S.D., Bashiri, A.H., Abdelrahman, A.A. and Eltaher, M.A. (2021), "Vibration response of perforated thick beam under moving load", Eur. Phys. J. Plus, 136(3), 1-15. https://doi.org/10.1140/epjp/s13360-021-01224-2.
  28. Attia, M.A. and Abdelrahman, A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005.
  29. Attia, M.A., Eltaher, M.A., Soliman, A., Abdelrahman, A.A. and Alshorbagy, A.E. (2018), "Thermoelastic crack analysis in functionally graded pipelines conveying natural gas by an FEM", Int. J. Appl. Mech., 10(4), 1850036. https://doi.org/10.1142/S1758825118500369.
  30. Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperaturedependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091.
  31. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  32. Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4.
  33. Chen, Y., Jin, G., Zhang, C., Ye, T. and Xue, Y. (2018), "Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory", Compos. Part B Eng., 153, 376-386. https://doi.org/10.1016/j.compositesb.2018.08.111.
  34. Dinh Duc, N., Quang, V.D., Nguyen, P.D. and Chien, T.M. (2018), "Nonlinear dynamic response of functionally graded porous plates on elastic foundation subjected to thermal and mechanical loads", J. Appl. Comput. Mech., 4(4), 245-259. https://doi.org/10.22055/JACM.2018.23219.1151.
  35. Doroushi, A., Eslami, M.R. and Komeili, A. (2011), "Vibration analysis and transient response of an FGPM beam under thermo-electro-mechanical loads using higher-order shear deformation theory", J. Intell. Mat. Syst., 22(3), 231-243. https://doi.org/10.1177/1045389X11398162.
  36. Ebrahimi, F., Fardshad, R.E. and Mahesh, V. (2019), "Frequency response analysis of curved embedded magneto-electroviscoelastic functionally graded nanobeams", Adv. Nano Res., 7(6), 391-403. https://doi.org/10.12989/anr.2019.7.6.391.
  37. Ebrahimi, F., Jafari, A. and Selvamani, R. (2020), "Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment", Adv. Nano Res., 8(1), 83-94. https://doi.org/10.12989/anr.2020.8.1.083
  38. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013a), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
  39. Eltaher, M.A., Mahmoud, F.F., Assie, A.E. and Meletis, E.I. (2013b), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Math. Comput., 224, 760-774. https://doi.org/10.1016/j.amc.2013.09.002.
  40. Eltaher, M.A., Attia, M.A., Soliman, A.E. and Alshorbagy, A.E. (2018), "Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM", Struct. Eng. Mech., 66(1), 97-111. https://doi.org/10.12989/sem.2018.66.1.097.
  41. Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. http://doi.org/10.12989/scs.2020.34.2.241.
  42. Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. https://doi.org/10.12989/sem.2020.75.3.357.
  43. Eltaher, M.A., Mohamed, S.A. and Melaibari, A. (2020a), "Static stability of a unified composite beams under varying axial loads", Thin-Walled Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488.
  44. Emam, S. and Eltaher, M.A. (2016), "Buckling and postbuckling of composite beams in hygrothermal environments", Compos. Struct., 152, 665-675. https://doi.org/10.1016/j.compstruct.2016.05.029.
  45. Emam, S., Eltaher, M., Khater, M. and Abdalla, W. (2018), "Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load", Appl. Sci., 8(11), 2238. https://doi.org/10.3390/app8112238.
  46. Esen, I., Ozarpa, C. and Eltaher, M.A. (2021), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552.
  47. Gan, B.S., Trinh, T.H., Le, T.H. and Nguyen, D.K. (2015), "Dynamic response of non-uniform Timoshenko beams made of axially FGM subjected to multiple moving point loads", Struct. Eng. Mech., 53(5), 981-995. https://doi.org/10.12989/sem.2015.53.5.981.
  48. Ganczarski, A. and Szubartowski, D. (2019), "Conditions of stress-free deformation of anisotropic FGM interface under constant temperature", J. Therm. Stresses, 42(1), 152-162. https://doi.org/10.1080/01495739.2018.1536868.
  49. Ghadiri, M., Shafiei, N. and Babaei, R. (2017), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., 25(2), 197-207. https://doi.org/10.12989/scs.2017.25.2.197.
  50. Gupta, A. and Talha, M. (2015), "Recent development in modeling and analysis of functionally graded materials and structures", Progress Aerosp. Sci., 79, 1-14. https://doi.org/10.1016/j.paerosci.2015.07.001.
  51. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  52. Hamed, M.A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020a), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
  53. Hamed M.A., Mohamed, S.A., Eltaher, M.A. (2020b), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(2), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
  54. Hamidi, B.A., Hosseini, S.A., Hayati, H. and Hassannejad, R. (2020), "Forced axial vibration of micro and nanobeam under axial harmonic moving and constant distributed forces via nonlocal strain gradient theory", Mech. Based Des. Struc., 1-15. https://doi.org/10.1080/15397734.2020.1744003.
  55. Hemmatnezhad, M., Ansari, R. and Rahimi, G.H. (2013), "Large-amplitude free vibrations of functionally graded beams by means of a finite element formulation", Appl. Math. Modell., 37(18-19), 8495-8504. https://doi.org/10.1016/j.apm.2013.03.055.
  56. Hosseini, S.A.H. and Rahmani, O. (2016), "Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model", Appl. Phys. A, 122(3), 169. https://doi.org/10.1007/s00339-016-9696-4.
  57. Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation" Steel Compos. Struct., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349.
  58. Lee, Y.D. and Erdogan, F. (1994), "Residual/thermal stresses in FGM and laminated thermal barrier coatings", Int. J. Fract., 69(2), 145-165. https://doi.org/10.1007/BF00035027.
  59. Malekzadeh, P. and Monajjemzadeh, S.M. (2013), "Dynamic response of functionally graded plates in thermal environment under moving load", Compos. Part B Eng., 45(1), 1521-1533. https://doi.org/10.1016/j.compositesb.2012.09.022.
  60. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  61. Mohamed, N., Eltaher, M.A., Mohamed, S. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
  62. Rahman, M., Hasan, A.S. and Yeasmin, I.A. (2019), "Modified multi-level residue harmonic balance method for solving nonlinear vibration problem of beam resting on nonlinear elastic foundation", J. Appl. Comput. Mech., 5(4), 627-638. https://doi.org/10.22055/JACM.2018.26729.1352.
  63. Pantuso, D., Bathe, K.J. and Bouzinov, P.A. (2000), "A finite element procedure for the analysis of thermo-mechanical solids in contact", Comput. Struct., 75(6), 551-573. https://doi.org/10.1016/S0045-7949(99)00212-6.
  64. Rajasekaran, S. and Khaniki, H.B. (2019), "Size-dependent forced vibration of non-uniform bi-directional functionally graded beams embedded in variable elastic environment carrying a moving harmonic mass", Appl. Math. Model., 72, 129-154. https://doi.org/10.1016/j.apm.2019.03.021.
  65. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stresses, 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
  66. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  67. Sedighi, H. M. (2014), "Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory", Acta Astronautica, 95, 111-123. https://doi.org/10.1016/j.actaastro.2013.10.020.
  68. Sedighi, H.M., Shirazi, K.H. and Noghrehabadi, A. (2012), "Application of recent powerful analytical approaches on the non-linear vibration of cantilever beams", Int. J. Nonlin Sci. Numer. Simul., 13(7-8), 487-494. https://doi.org/10.1515/ijnsns-2012-0030.
  69. Sedighi, H. M., Koochi, A., Daneshmand, F. and Abadyan, M. (2015), "Non-linear dynamic instability of a double-sided nanobridge considering centrifugal force and rarefied gas flow", Int. J. Non-Linear Mech., 77, 96-106. https://doi.org/10.1016/j.ijnonlinmec.2015.08.002.
  70. Sedighi, H.M. and Bozorgmehri, A. (2016), "Dynamic instability analysis of doubly clamped cylindrical nanowires in the presence of Casimir attraction and surface effects using modified couple stress theory", Acta Mechanica, 227(6), 1575-1591. https://doi.org/10.1007/s00707-016-1562-0.
  71. She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct, 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027.
  72. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin-Walled Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  73. Simsek, M. and Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024.
  74. Simsek, M. (2010). "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92(4), 904-917. https://doi.org/10.1016/j.compstruct.2009.09.030.
  75. Soliman, A.E., Eltaher, M.A., Attia, M.A. and Alshorbagy, A.E. (2018), "Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility", Struct. Eng. Mech., 66(1), 85-96. https://doi.org/10.12989/sem.2018.66.1.085.
  76. Thompson, M.K. and Thompson, J.M. (2017), ANSYS Mechanical APDL for Finite Element Analysis, Butterworth-Heinemann.
  77. Touloukian, Y.S. (1966), "Thermophysical properties of high temperature solid materials. Volume 5. nonoxides and their solutions and mixtures, including miscellaneous ceramic materials", AD0649953, Thermophysical and Electronic Properties In-formation Analysis Center Lafayette, U.S.A.
  78. Tsiptsis, I.N. and Sapountzaki, O.E. (2019), "Beam & shell models for composite straight or curved bridge decks with intermediate diaphragms & assessment of design specifications", J. Appl. Comput. Mech., 5(5), 998-1022. https://doi.org/10.22055/JACM.2019.28743.1502.
  79. Ueda, S. and Mizusawa, S. (2020), "An axisymmetric crack in a functionally graded thermal barrier coating bonded to a homogeneous elastic substrate under transient thermal loading", J. Therm. Stresses, 43(8), 940-961. https://doi.org/10.1080/01495739.2020.1755614.
  80. Wang, H. and Qin, Q.H. (2008), "Meshless approach for thermomechanical analysis of functionally graded materials", Eng. Anal. Boundary Elements, 32(9), 704-712. https://doi.org/10.1016/j.enganabound.2007.11.001.
  81. Wang, Y. and Wu, D. (2016), "Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load", Acta Astronautica, 127, 171-181. https://doi.org/10.1016/j.actaastro.2016.05.030.
  82. Xiang, H.J. and Yang, J. (2008), "Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction", Compos. Part B Eng., 39(2), 292-303. https://doi.org/10.1016/j.compositesb.2007.01.005.
  83. Yang, J., Chen, Y., Xiang, Y. and Jia, X.L. (2008), "Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load", J. Sound Vib., 312(1-2), 166-181. https://doi.org/10.1016/j.jsv.2007.10.034.
  84. Zenkour, A.M. and Abouelregal, A.E. (2014), "The effect of two temperatures on a FG nanobeam induced by a sinusoidal pulse heating", Struct. Eng. Mech., 51(2), 199-214. https://doi.org/10.12989/sem.2014.51.2.199.

Cited by

  1. Arching effect in sand piles under base deflection using geometrically non-linear isogeometric analysis vol.26, pp.4, 2021, https://doi.org/10.12989/gae.2021.26.4.369