• Title/Summary/Keyword: Leg, Gait

Search Result 273, Processing Time 0.019 seconds

Static Gait Generation of Quadruped Walking Robot (4각 보행 로봇의 정적 걸음새 생성)

  • Kim, Nam-Woong;Sin, Hyo-Chol;Kim, Kug-Weon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.217-222
    • /
    • 2007
  • This paper describes a static gait generation process and a mechanical design process of leg mechanisms for quadruped robots. Actually robot walking is realized with the joint motion of leg mechanisms. In order to calculate the time-angle trajectories for each joint of leg mechanisms, we generate end-tip trajectories with time for each leg in the global inertial coordinate system intuitively, followed by coordinate transformations of the trajectories into the local coordinates system fixed in each leg, finally the angle-time trajectories of each joint of leg mechanisms are obtained with inverse kinematics. The stability of the gait generated in this paper was verified by a multi-body dynamic analysis using the commercial software $ADAMS^{(R)}$. Additionally the mechanical specifications such as gear reduction ratio, electrical specifications of motor and electrical power consumption during walking have been confirmed by the multi-body dynamic analysis. Finally we constructed a small quadruped robot and confirmed the gait.

Fault-Tolerant Tripod Gaits Considering Deadlock Avoidance (교착 회피를 고려한 내고장성 세다리 걸음새)

  • 노지명;양정민
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.585-593
    • /
    • 2004
  • Fault-tolerant gait planning in legged locomotion is to design gaits with which legged robots can maintain static stability and motion continuity against a failure in a leg. For planning a robust and deadlock-free fault-tolerant gait, kinematic constraints caused by a failed leg should be closely examined with respect to remaining mobility of the leg. In this paper, based on the authors's previous results, deadlock avoidance scheme for fault-tolerant gait planning is proposed for a hexapod robot walking over even terrain. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. It is shown that for guaranteeing the existence of the previously proposed fault-tolerant tripod gait of a hexapod robot, the configuration of the failed leg must be within a range of kinematic constraints. Then, for coping with failure situations where the existence condition is not satisfied, the previous fault-tolerant tripod gait is improved by including the adjustment of the foot trajectory. The foot trajectory adjustment procedure is analytically derived to show that it can help the fault-tolerant gait avoid deadlock resulting from the kinematic constraint and does not make any harmful effect on gait mobility. The post-failure walking problem of a hexapod robot with the normal tripod gait is addressed as a case study to show the effectiveness of the proposed scheme.

Walking Features Detection for Human Recognition

  • Viet, Nguyen Anh;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.787-795
    • /
    • 2008
  • Human recognition on camera is an interesting topic in computer vision. While fingerprint and face recognition have been become common, gait is considered as a new biometric feature for distance recognition. In this paper, we propose a gait recognition algorithm based on the knee angle, 2 feet distance, walking velocity and head direction of a person who appear in camera view on one gait cycle. The background subtraction method firstly use for binary moving object extraction and then base on it we continue detect the leg region, head region and get gait features (leg angle, leg swing amplitude). Another feature, walking speed, also can be detected after a gait cycle finished. And then, we compute the errors between calculated features and stored features for recognition. This method gives good results when we performed testing using indoor and outdoor landscape in both lateral, oblique view.

  • PDF

Gait Estimation System for Leg Diagnosis and Rehabilitation using Gyroscopes (하지 진단 및 재활을 위한 각속도계 기반 측정시스템)

  • Lee, Min-Young;Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.866-871
    • /
    • 2010
  • Gait analysis is essential for leg diagnosis and rehabilitation for the patients, the handicapped and the elderly. The use of 3D motion capture device for gait analysis is very common for gait analysis. However, this device has several shortcomings including limited workspace, visibility and high price. Instead, we developed gait estimation system using gyroscopes. This system provides gait information including the number of gaits, stride and walking distance. With four gyroscope (one for each leg's thigh and calf) outputs, the proposed gait modeling estimates the movements of the hip, the knees and the feet. Complete pedestrian localization is implemented with gait information and the heading angle estimated from the rate gyro and the magnetic compass measurements. The developed system is very useful for diagnosis and the rehabilitation of the pedestrian at the hospital. It is also useful for indoor localization of the pedestrians.

Effect of Korean Traditional Dance Movement Training on Balance, Gait and Leg Strength in Home Bound Elderly Women (율동적 동작 훈련이 여성 노인의 균형, 걸음걸이, 하지 근력에 미치는 영향)

  • 전미양;최명애;채영란
    • Journal of Korean Academy of Nursing
    • /
    • v.30 no.3
    • /
    • pp.647-658
    • /
    • 2000
  • The purpose of this study was to determine the effect of Korean traditional dance movement training on balance, gait and leg strength in elderly women who are forced to remain at home. Fifteen elderly women of an experimental group between the ages 65 and 75 years who have normal vision and passed the hearing and Romberg test, participated in the 12 weeks' dance movement training. Fourteen subjects of a control group were selected. Korean traditional dance movement training was developed on the basis of Korean traditional dance and music by the authors. It took approximately 50 minutes to perform the dance movement program. The subjects of the experimental group practiced dance training for 3 times a week during 12 weeks. During the 50 minutes workout, the subjects practiced 15 minutes of a warm-up dance, 25 minutes of a conditioning dance, and 10 minutes of a cool-down dance. The intensity for the conditioning phase was between 60% and 65% of age-adjusted maximum heart rates. The balance, gait and leg strength were measured prior to and after the experimental treatment. Total balance scores of the experimental group were significantly higher than those of the control group. Scores of sternal nudge, one leg standing balance and reaching up among 13 items have significantly increased after the dance movement training. Total scores of gait of the experimental group were significantly higher than those of the control group following the korean traditional dance movement training. Scores of experimental group in step height, path deviation and turning while walking among 9 items have increased significantly following 12 weeks of dance movement training. The leg strength of experimental group was significantly higher than those of the control group following the Korean traditional dance movement training. The balance, gait and leg strength have significantly correlated in the experimental group following the Korean traditional dance movement training. The results suggest that Korean traditional dance movement training can improve balance, gait and leg strength in home bound elderly women.

  • PDF

The Effects of Initiation Side on Gait Symmetry in the Stroke Patients

  • Shin, Hwa-Kyung;Noh, Dae-Yong
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.6
    • /
    • pp.399-404
    • /
    • 2013
  • Purpose: To investigate the effects of initiation side on gait symmetry in the chronic stroke patients. Methods: Twenty one patients with independent gait after stroke were divided into the paretic-leg gait initiation group (PLI) and the nonparetic-leg gait initiation group (NPLI). The symmetry ratio (SR) was calculated from of the spatiotemoral and kinematic parameter which measured by 3D motion analysis. Results: In the spatiotemporal variables, SR-step length and SR-velocity was significantly different between groups (p<0.05). In the kinematic variables, SR-TOAA and SR-SwPAA of the hip joint was significantly different between groups (p<0.05). Conclusion: We suggest that the initiating leg may influence on the gait symmetry of stroke patient These results will be a helpful reference in hemiplegic gait training or intervention.

The Variability Analysis of the Kinematic Variables of the Lower Extremities During AK(above-knee) Amputee Gait (대퇴절단 환자의 보행 시 양하지의 운동학적 변인에 대한 variability 분석)

  • Seo, Uk-hyeon;Ryu, Ji-seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.131-142
    • /
    • 2005
  • This study was investigated the stability of the AK amputee gait through analysing the variability on kinematic variables between the sound leg and the prosthetic limb. The one male, AK amputee who could walk for himself with his prosthetic limb was participated in this study. Six cameras of the MCU 240 and the QTM(Qualisys Track Manager) software were used for data collecting in this study. The relative angle of both segments was the difference between the absolute angle of the distal segment and the absolute angle of the proximal segment. The coupling angles between the prosthetic limb and the sound leg were caculated on the thigh Flexion/Extension in relative to the shank Flexion/Extension and the shank Flexion/Extension n relative to the foot Flexion/Extension. In order to evaluate the variability of segment and joint angle, C.V. was used, and to evaluate the variability for coupling angles, the Relative motion calculated by vector coding method of the continuous methods was used. As stated, the gait pattern of the prosthetic limb was almost similar gait pattern of the sound leg, but the prosthetic limb showed that the gait pattern of the sound leg and the prosthetic limb were not stable against the sound leg.

Changes of Lower Limb Joints Stiffness with Gait Speed in Knee Osteoarthritis (무릎 골관절염 환자의 보행속도에 따른 하지 관절 강성 변화)

  • Park, Hee-Won;Park, Su-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.723-729
    • /
    • 2012
  • Spring-like leg models have been employed to explain various dynamic characteristics in human walking. However, this leg stiffness model has limitations to represent complex motion of actual human gait, especially the behaviors of each lower limb joint. The purpose of this research was to determine changes of total leg stiffness and lower limb joint stiffness with gait speed in knee osteoarthritis. Joint stiffness defined as the ratio of the joint torque change to the angular displacement change. Eight subjects with knee osteoarthritis participated to this study. The subject walked on a 12 m long and 1 m wide walkway with three sets of four different randomly ordered gait speeds, ranging from their self-selected speed to maximum speed. Kinetic and kinematic data were measured using three force plates and an optical marker system, respectively. Joint torques of lower limb joints calculated by a multi-segment inverse dynamics model. Total leg and each lower limb joint had constant stiffness during single support phase. The leg and hip joint stiffness increased with gait speed. The correlation between knee joint angles and torques had significant changed by the degree of severity of knee osteoarthritis.

Analysis of the Gait Characteristics and Usability after Wearable Exoskeleton Robot Gait Training in Incomplete Spinal Cord Injury Patients with Industrial Accidents: A Preliminary Study

  • Bae, Young-Hyeon;Kim, Sung-Shin;Lee, Anna;Fong, Shirley S.M.
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.235-244
    • /
    • 2022
  • Objective: The aim of this study was to investigate of the foot plantar pressure and usability after gait training using the ExoAtlet wearable exoskeleton robot in an incomplete spinal cord injury (SCI) patient. Design: A case study Methods: Six participants with an asymmetry in motor and sensory function completed the gait training using ExoAtlet wearable exoskeleton robot for 15 sessions, five per weeks, 3weeks. They were divided into two groups (low and high strength group) and group differences were evaluated about session at stating of gait, gait distance at final session and foot plantar pressures and useability after training. Results: Low strength group was faster than high strength group on adaptation of robot gait. And high strength group increased faster than low strength group on the gait distance during training. In standing and gait, weaker leg was higher than stronger leg on mean foot plantar pressure in low strength group. And stronger leg was higher than weaker leg on foot plantar pressure in high strength group. The length of the anterior-posterior trajectory of the center of pressure during gait was similar in low strength group, but different in high strength group. useability was positive about ExoAtlet wearable exoskeleton gait after training. Conclusions: ExoAtlet wearable exoskeleton robot gait training was positive about improving gait in all participants regardless of differences in severity of symptoms and gait abnormalities.

Gait Asymmetry in Children with Down Syndrome (다운증후군 아동들의 보행 비대칭성 연구)

  • Lim, Bee-Oh;Han, Dong-Ki;Seo, Jung-Suk;Eun, Seon-Deok;Kwon, Young-Hoo
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.145-151
    • /
    • 2006
  • A large interindividual variability and some abnormally kinematic patterns at the lower extremity were the main features of the gait in children with Down syndrome. The purposes of this study were to investigate the gait asymmetry and biomechanical difference between dominant leg and non dominant leg in children with Down syndrome. Seven boys with Down Syndrome(age: $120{\pm}0.9yrs$, weight $34.4{\pm}8.4kg$, leg length: $68.7{\pm}5.0cm$) participated in this study. A 10.0 m ${\times}$ 1.3 m walkway with a firm dark surface was built and used for data collection. Three-dimensional motion analyses were performed to obtain the joint angles and range of motions. The vertical ground reaction forces(%BW) and impulses($%BW{\cdot}s$) were measured by two force plates embedded in the walkway. Asymmetry indices between the legs were computed for all variables. After decision the dominant leg and the non dominant leg with max hip abduction angle, paired samples t-test was employed for selected kinematic and ground reaction force variables to analyze the differences between the dominant leg and the non dominant leg. The max hip abduction angle during the swing phase showed most asymmetry, while the knee flexion angle at initial contact showed most symmetry in walking and running. The dominant leg showed more excessive abduction of hip in the swing phase and more flat-footed contact than the non dominant leg. Vertical peak force in running showed more larger than those of in walking, however, vertical impulse showed more small than walking due to decrease of support time. In conclusion, the foot of dominant leg contact more carefully than those of non dominant leg. And also, there are no significant difference between the dominant leg and the non dominant leg in kinematic variables and ground reaction force due to large interindividual variability.