Over the past decades, the Lee-Carter model [1] has attracted much attention from various demography-related fields in order to project the future mortality rates. In the Lee-Carter model, the speed of mortality improvement is stochastically modeled by the so-called mortality index and is used to forecast the future mortality rates based on the time series analysis. However, the modeling is applied to long time series and thus an important structural change might exist, leading to potentially large long-term forecasting errors. Therefore, in this paper, we are interested in detecting the structural change of the Lee-Carter model and investigating the actuarial implications. For the purpose, we employ the tests proposed by Coelho and Nunes [2] and analyze the mortality data for six countries including Korea since 1970. Also, we calculate life expectancies and whole life insurance premiums by taking into account the structural change found in the Korean male mortality rates. Our empirical result shows that more caution needs to be paid to the Lee-Carter modeling and its actuarial applications.
지속적인 사망률 개선으로 인한 평균 수명연장은 인구 고령화의 주요인이며 연금 공급자의 재정건전성에 심각한 영향을 미치는 원인으로 지목되기에 정확한 미래 사망률의 예측은 현 시점에서 선행되어야할 중요한 과제다. 본 연구는 미래 사망률을 예측하는 대표적인 확률적 사망률 모형인 Lee-Carter 모형을 사용하여 과거 생명표로 산출한 왜도를 기반으로 미래 사망률 지수를 간접적으로 예측하는 왜도예측방식을 제시한다. 기존의 Lee-Carter 모형을 이용한 사망률 예측방식은 사망률 지수를 추정하고 미래값을 직접 예측함으로써 미래 사망률이 지나치게 개선되는 현상을 보이며, 이를 바탕으로 산출된 연금액과 지급기간 추정 등 연금 공급자의 리스크 관리에 영향을 미친다. 본 연구는 기존 예측 방식의 사망률 예측 결과와 제시한 왜도 예측 방식의 사망률 예측 결과를 비교함으로써 기존 사망률 예측 방식의 문제점을 지적한다. 분석결과 왜도 예측을 통한 Lee-Carter 모형의 사망률 예측은 기존 방식보다 사망률 개선효과를 더 적게 반영하며 장수리스크를 덜 왜곡한다는 데 의의가 있다고 할 수 있다. 하지만 기존 방식 간 차이를 감안하여 적정한 미래 사망률 수준을 찾기 위해 임의로 부여한 가중치에 대해 향후 검토가 필요할 것으로 보인다.
빠른 고령화로 고령층의 증가는 인구구조 변화와 인구고령화에 영향을 미친다. 예전부터 선진국은 인구고령화를 주요현안으로 간주하여 고령화로 인한 연금 재정건전성, 건강 및 노인 복지 시스템의 지속 가능성에 집중하고 있다. 이처럼 고령층의 증가로 인구구조 변화와 인구고령화에 미치는 사망률 예측은 어느 때보다도 중요하다. 본 논문은 통계청 1970-2016년 각세별 생명표 자료를 활용하여 사망률 모형 6가지를 비교하였다. 이들 모형은 Lee-Carter(LC) 모형 (Lee and Carter, Journal of the American Statistical Association, 87, 659-671, 1992)에 근원을 두고 있으며, LC 의 가정을 수정하고 개선한 것이다. 이들 개선과정과 가정검토를 모형별로 살펴보고 우리나라에 적합한 사망률 모형을 모색했다. 분석결과 빠른 고령화와 연령별 사망률의 개선 효과를 보이는 우리나라의 경우 기대수명에 큰 변화를 주지 않고 이들 현상을 반영하고 연령별 사망률 패턴을 수정하는 LC-ER 모형 (Li 등, Demography, 50, 2037-2051, 2013)과 Li-Lee 모형과 LC-ER모형을 조합한 LL&LC-ER 모형으로 사망률을 예측하는 것이 바람직하다.
사망률 예측에 많이 사용되고 있는 Lee and Carter모형은 간결한 구조와 상대적으로 안정적인 예측력을 갖고 있는 것으로 알려져 있다. 그러나 연령별 사망률의 감소속도가 일정하게 유지된다는 가정으로 인하여 최근 연령별 사망률의 감소 패턴을 적절히 반영하지 못하고, 공변량을 사용할 수 없어 예측력을 제고할 수 없다는 제한점을 갖고 있다. 본 논문에서는 두 개의 확률과정을 이용하여 Lee and Carter 모형의 단점을 보완할 수 있는 Park, Choi and Kim의 모형을 소개하고 두 모형의 구조적인 특징을 서술하였다. 또한 각 모형에서 우리나라의 자료로 2005에서 2050년까지의 남녀별 예측기대여명을 작성하여 비교하였다.
우리나라의 경우 선진국에 비해 짧은 기간 동안 사망률 개선이 급속히 이루어짐에 따라 사망률 예측에 있어 모형의 선택뿐만 아니라 시계열 이용기간의 선정 또한 중요한 고려사항이 될 수 있다. 따라서 본 연구에서는 시계열 이용기간의 선택 관점에서 회귀모형을 이용하는 방법을 제안하였다. 또한 Lee-Carter (LC) 모형, LC류 (Lee-Miller (LM), Booth-Maindonald-Smith (BMS)) 그리고 비모수 모형(functional data model (FDM), Coherent FDM)을 토대로 시계열 이용기간을 다르게 적용할 경우 어떠한 문제가 발생되며, 연령별 사망률과 기대수명 예측력에 어떠한 차이를 보이는지 살펴보았다. 분석결과를 바탕으로 5개의 모형별 2030년까지 남녀의 연령별 사망률과 예측기대수명을 작성하고 통계청(Korean Statistical Information Service; KOSIS)에서 제공하는 장래 연령별 사망률과 기대수명과 비교하였다.
주택연금은 계약기간이 확정되어 있지 않기 때문에 계약 종료 시점에 대한 확률분포 예측이 장수리스크 관리를 위하여 중요하다. 따라서 고령화의 주요인인 기대수명의 연장은 연금 재정건전성에 심각한 영향을 끼칠 수 있기 때문에 사망률의 개선 추세가 적절히 반영된 사망률 예측 연구가 선행될 필요가 있다. 본 연구에서는 Lee-Carter (LC) 모형과 연생모형을 이용하여 주택연금 계리모형에 사망률 개선 효과를 반영하였다. 전통적 LC 모형을 통한 사망률 예측 방식은 미래 사망률이 지나치게 개선되는 현상을 보이고 있기 때문에 사망률 개선효과를 조금 더 적절한 수준으로 보정하고자 본 연구에서는 사망확률 분포의 편중을 나타내는 왜도를 활용한 LC 모형을 적용하였다. 왜도 예측 방식을 LC 모형에 적용한 방법론을 사용하여 주택연금 월 지급금을 산출해본 결과 전통적 LC 모형의 사망률 예측보다 사망률 개선효과를 더 적게 반영하여 더 큰 월 지급금이 산출되었고, 왜도 활용 LC 모형에 의한 이러한 결과는 장수 리스크를 덜 왜곡한다는 데 의의가 있다고 볼 수 있다. 본 연구 결과는 사망률 감소 추세를 적절하게 반영한 위험률을 계산하여 주택연금의 발행기관 및 보증기관의 적정한 월 지급금 지급과 차후 월 지급금의 과대지급으로 인한 지급불능을 방지할 수 있는 리스크 관리 방법으로 이용될 수도 있다.
Communications for Statistical Applications and Methods
/
제28권5호
/
pp.521-536
/
2021
As life expectancies increase continuously over the world, the accuracy of forecasting mortality is more and more important to maintain social systems in the aging era. Currently, the most popular model used is the Lee-Carter model but various studies have been conducted to improve this model with one of them being 6-parametric factor model (6-PFM) which is introduced in this paper. To this new model, long short-term memory (LSTM) and regularized LSTM are applied in addition to vector autoregression (VAR), which is a traditional time-series method. Forecasting accuracies of several models, including the LC model, 4-PFM, 5-PFM, and 3 6-PFM's, are compared by using the U.S. and Korea life-tables. The results show that 6-PFM forecasts better than the other models (LC model, 4-PFM, and 5-PFM). Among the three 6-PFMs studied, regularized LSTM performs better than the other two methods for most of the tests.
장래인구추계방법으로 코호트 요인법(cohort component method)을 적용하기 위해서는 장래출생, 사망, 이동을 정확하게 예측하여야 한다. 이 연구에서는 기존의 사망률예측방법을 검토하고, 다양한 모델 중에서 과거의 사망률 추세에 수학적 곡선을 적합시켜서 외삽 연장하는 대표적인 관계적 모형인 Lee-Carter법을 선택하여 우리나라의 성, 연령별 장래사망률을 추정하였다. 성, 연령별 생명표와 평균수명의 추세를 검토하고 기존 자료와 비교한 결과 lee-Carter 모형을 우리나라 사망력 예측에 적용하였을 경우 설명력이 매우 높았다. 실측자료와 lee-Carter 모형을 이용한 추정자료를 비교한 결과 남녀 모든 연령층에서 전 비교기간(1971-2003) 동안 모두 차이가 크지 않았다. Lee-Carter 모형을 이용하여 추정한 장래 평균수명은 2051년에 남여 각각 82.73년과 89.41년으로 그 차이는 2005년의 7.06년에서 6.68년으로 감소하였다. 다만, 우리나라 영아사망률자료의 제약으로 일본의 2050년 추계자료를 우리의 2051년 목표치로 사용하였다. 앞으로 충분한 시계열자료가 확보되면 우리나라의 자료를 직접 이용하여 장래예측이 가능하게 될 것이다. 그리고 성, 연령별 사망원인을 극복한다는 가정을 도입할 수 있다면 장래 사망률 예측에 설명력을 더욱 높일 수 있을 것이다. 이것은 우리나라 사망원인 통계의 정확성과 사망원인별 생명표의 시계열 확보가 이루어질 때 가능할 것이다.
사망률 예측모형과 생명표 작성방법에 기반을 둔 예측평균수명 작성은 미래의 사망수준을 평가하는 효과적인 방법이 된다. 2006년 통계청에서 장래인구추계 작성 시 예측평균수명을 작성하였으나, 2006년 이후 현재까지 실제평균수명과 적지 않은 차이를 보이고 있어 평균수명의 증가속도를 반영하지 못하고 있다. 이의 원인으로는 전망치에 대한판단, 사망률 예측모형의 선택과 사용 등이 이유가 될 수 있다. 본 논문에서는 사망률 예측모형의 선택관점에서 이 문제를 살펴보고자 한다. 2011년 장래인구추계 작성을 앞둔 상황에서 오류의 반복을 피하기 위해서는 사망률 예측모형에 대한 특성 및 적용가능성에 대한 충분한 검토가 이루어진 후 적절한 모형을 선택해야 할 것이다. 사망률 예측모형은 주로 사용되고 있는 LC(Lee와 Carter) 모형과 이의 개선모형들, 사망확률 확장모형인 HP8(Heligman과 Pollard 8 parameters) 모형 등 모두 5개의 모형을 비교 분석하였다. 분석결과를 바탕으로 5개의 모형별로 2030까지의 남녀별 예측평균수명을 작성하여 제시하였고, 이를 통계청에서 제공하는 예측평균수명과 비교하였다. 5개의 모형에 의해 작성된 2030년까지의 새로운 예측평균수명은 통계청의 결과보다 높게 나타나 실제평균수명의 변화를 상대적으로 잘 반영하는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.