• Title/Summary/Keyword: Leaving group effect

Search Result 92, Processing Time 0.021 seconds

MO Theoretical Studies on the Benzylic and Resonance Shunt Effects

  • Ikchoon Lee;Jeong Ki Cho;Chang Kon Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.182-188
    • /
    • 1991
  • The reactions of aniline with benzyl and phenacyl compounds are studied by the AM1 method. Two types of modeling were adopted: Cation-neutral, in which a proton is attached to the leaving group F and anion-neutral model, in which aniline was replaced by phenoxide with Cl as the leaving group. The cation-neutral model represented the reactvery well, reproducing the various solution-phase experimental results. In the benzyl system, the ${\pi}$-electrons of the two rings (X-ring in the nucleophile and Y-ring in the substrate) interact conjugatively in the transition state (TS) resulting in a bond contraction of the $C_{\alpha}-C_{Y1}$ bond (benzylic effect), whereas in the phenacyl system the ${\pi}$ electrons of the X-ring delocalizes more efficiently into the carbonyl group than into the Y-ring (resonance shunt effect) with a bond contraction of the $C_{\alpha}-C_{\beta}$ bond. The bond contraction in the benzylic effect was substantially greater than that in the resonance shunt effect. The TS was rather loose for benzyl while it was tighter for phenacyl system. Various bond length changes with substituents in the TS were, however, found to be irregular.

Geometries and Energies of S$_N$2 Transition States$^\dag$

  • Lee, Ik-Choon;Kim, Chan-Kyung;Song, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.391-395
    • /
    • 1986
  • MNDO calculations were carried out to determine reactant complexes and transition states of the $S_N2$ reactions of $CH_3X\;+\;Y^-\;{\to}\;CH_3Y\;+\;X^-$ where X = F, Cl, CN and Y = CN, OH, F, Cl. The leaving group ability was found to vary inversely with the activation barrier, which in turn was mainly ascribable to the deformation energies accompanied with bond stretching of C-X bond and inversion of $CH_3$ group. The nucleophilicity was shown to be in the order $Cl^->F^->OH^->CN^-$ but the effect on the activation barrier was relatively small compared with that of the leaving group. The bond breaking and bond formation indices and energy decomposition analysis showed that the TS for the reaction of $CH_3$Cl occurs in the early stage of the reaction coordinate relative to that of $CH_3$F. It has been shown that the potential energy surface (PES) diagrams approach can only accommodate thermodynamic effects but fails to correlate intrinsic kinetic effects on the TS structure.

Theoretical Studies of Substituent Effects on S$_N$2 Transition States$^\dag$

  • Lee, Ik-Choon;Song, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.186-190
    • /
    • 1986
  • Effects of substituents in the nucleophile(X), the substrate(Y) and the leaving group(Z) on the structure of $S_N2$ transition states have been analyzed by considering effects of four components, electrostatic($E_{es}$), exchange repulsion ($E_{ex}$), polarization($E)_{pl}$) and charge transfer($E_{ct}$) terms, of interaction between the reactants on the degree of bond making and bond breaking. Prediction of net effects of all substituents(X, Y and Z) on the degree of bond making were found to be clearcut whereas the effect of an electron withdrawing group on the substrate (Y = EWG) on the degree of bond breaking was complex; the substituent(Y = EWG) is normally carbon-leaving group($C^{\ast}$-L) bond tightening($E_{pl}$ dominance) but becomes $C^{\ast}$-L bond loosening when the bond is strongly antibonding ($E_{ct}$ dominance). Our model calculations on the reaction of $CH_2XNH_2$ with $YCH_2COOCH_2Z$ using energy decomposition scheme have confirmed that predictions based on our analysis are correct.

The α-Effect in Hydrazinolysis of 4-Chloro-2-Nitrophenyl X-Substituted-Benzoates: Effect of Substituent X on Reaction Mechanism and the α-Effect

  • Kim, Min-Young;Kim, Tae-Eun;Lee, Jieun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2271-2276
    • /
    • 2014
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reaction of 4-chloro-2-nitrophenyl X-substituted-benzoates (6a-6h) with a series of primary amines including hydrazine in 80 mol % $H_2O$/20 mol % DMSO at $25.0^{\circ}C$. The Br${\o}$nsted-type plot for the reaction of 4-chloro-2-nitrophenyl benzoate (6d) is linear with ${\beta}_{nuc}$ = 0.74 when hydrazine is excluded from the correlation. Such a linear Br${\o}$nsted-type plot is typical for reactions reported previously to proceed through a stepwise mechanism in which expulsion of the leaving group occurs in the rate-determining step (RDS). The Hammett plots for the reactions of 6a-6h with hydrazine and glycylglycine are nonlinear. In contrast, the Yukawa-Tsuno plots exhibit excellent linear correlations with ${\rho}_X$ = 1.29-1.45 and r = 0.53-0.56, indicating that the nonlinear Hammett plots are not due to a change in RDS but are caused by resonance stabilization of the substrates possessing an electron-donating group (EDG). Hydrazine is ca. 47-93 times more reactive than similarly basic glycylglycine toward 6a-6h (e.g., the ${\alpha}$-effect). The ${\alpha}$-effect increases as the substituent X in the benzoyl moiety becomes a stronger electron-withdrawing group (EWG), indicating that destabilization of the ground state (GS) of hydrazine through the repulsion between the nonbonding electron pairs on the two N atoms is not solely responsible for the substituent-dependent ${\alpha}$-effect. Stabilization of transition state (TS) through five-membered cyclic TSs, which would increase the electrophilicity of the reaction center or the nucleofugality of the leaving group, contributes to the ${\alpha}$-effect observed in this study.

Eliminations from (E)-2,4-Dinitrobenzaldehyde O-Aryloximes Promoted by R3N/R3NH+ in 70 mol% MeCN(aq). Effects of Leaving Group and Base-Solvent on the Nitrile-Forming Transition-State

  • Cho, Bong Rae;Pyun, Sang Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1030-1034
    • /
    • 2013
  • Elimination reactions of $(E)-2,4-(NO_2)_2C_6H_2CH=NOC_6H_3-2-X-4-NO_2$ (1a-e) promoted by $R_3N/R_3NH^+$ in 70 mol % MeCN(aq) have been studied kinetically. The reactions are second-order and exhibit Br$\ddot{o}$nsted ${\beta}$ = 0.80-0.84 and ${\mid}{\beta}_{lg}{\mid}$ = 0.39-0.42, respectively. For all leaving groups and bases employed in this study, the ${\beta}$ and ${\mid}{\beta}_{lg}{\mid}$ values remained almost the same. The results can be described by a negligible $p_{xy}$ interaction coefficient, $p_{xy}={\partial}{\beta}/pK_{lg}={\partial}{\beta}_{lg}/pK_{BH}{\approx}0$, which describes the interaction between the base catalyst and the leaving group. The negligible pxy interaction coefficient is consistent with the $(E1cb)_{irr}$ mechanism. Change of the base-solvent system from $R_3N$/MeCN to $R_3N/R_3NH^+$-70 mol % MeCN(aq) changed the reaction mechanism from E2 to $(E1cb)_{irr}$. Noteworthy was the relative insensitivity of the transition state structure to the reaction mechanism change.

Application of the Extended Grunwald-Winstein Equation to Solvolyses of n-Propyl Fluoroformate and a Consideration of Leaving Group Effects

  • Seong, Mi-Hye;Kyong, Jin-Burm;Kim, Dong-Kook;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1747-1751
    • /
    • 2008
  • Reactions of n-propyl fluoroformate in a variety of pure and binary solvents have been studied at 40.0 {^{\circ}C}. The extended (two-term) Grunwald-Winstein equation has been applied to the specific rates of solvolysis of npropyl fluoroformate. The sensitivities (l = 1.80 ${\pm}$ 0.17 and m = 0.96 ${\pm}$ 0.10) to changes in solvent nucleophilicity and solvent ionizing power and the $k_F/k_{Cl}$ values are similar to those for solvolyses of n-octyl fluoroformate over the full range of solvents, suggesting that the addition step of an addition-elimination mechanism is ratedetermining. These observations are also compared with those previously reported for the corresponding chloroformate and fluoroformate esters.

A Kinetic Study on Nucleophilic Substitution Reactions of Phenyl Y-Substituted-Phenyl Carbonates with Z-Substituted-Phenoxides: Effect of Modification of Nonleaving Group from Benzoyl to Phenyloxycarbonyl on Reactivity and Reaction Mechanism

  • Min, Se-Won;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3253-3257
    • /
    • 2012
  • Second-order rate constants for the reactions of phenyl Y-substituted-phenyl carbonates 5a-g with Z-substituted-phenoxides ($k_{Z-PhO^-}$) have been measured spectrophotometrically in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. 4-Nitrophenyl phenyl carbonate (5e) is up to 235 times more reactive than 4-nitrophenyl benzoate (4e). The Br$\o$nsted-type plot for the reactions of 5e with Z-substituted-phenoxides is linear with ${\beta}_{nuc}=0.54$, which is typical for reactions reported previously to proceed through a concerted mechanism. Hammett plots correlated with ${\sigma}^o$ and ${\sigma}^-$ constants for the reactions of 5a-f with 4-chlorophenoxide exhibit highly scattered points. In contrast, the Yukawa-Tsuno plot results in an excellent linear correlation with ${\rho}_Y=1.51$ and r = 0.52, indicating that the leaving-group departure occurs at the rate-determining step (RDS). A stepwise mechanism, in which leaving-group departure occurs at RDS, has been excluded since the incoming 4-$ClPhO^-$ is more basic and a poorer nucleofuge than the leaving Y-substituted-phenoxides. Thus, the reaction has been concluded to proceed through a concerted mechanism. Our study has shown that the modification of the nonleaving group from benzoyl to phenyloxycarbonyl causes a change in the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway) as well as an increase in the reactivity.

Anomalous Behavior of the Ethyl Group in the Aminolysis of S-Phenyl Acetate with Benzylamine in Acetonitrile

  • Lee, Ik-Choon;Lee, Hai-Whang;Lee, Byung-Choon;Choi, Jin-Heui
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.201-204
    • /
    • 2002
  • The rates of the aminolysis of S-phenyl substituted-acetate series $(RC(=O)SC_6H_4Z$, with R=Me, Et, i-Pr, t-Bu and Bn) with benzylamines $(XC_6H_4CH_2NH_2)$ are not correlated simply with the Taft's polar $({\sigma}^{\ast})$ and/or steric effect constants $(E_s)$ of the substituents due to abnormally enhanced rate of the substrate with R=Et. Furthermore, the cross-interaction constant, ${\rho}x_z$ , is the largest with R=Et. These anomalous behaviors can only be explained by invoking the vicinal bond $({\sigma})$-antibond $({\sigma}^{\ast})$ charge transfer interaction between C-$C{\alpha}$ and C-S bonds. In the tetrahedral zwitterionic intermediate, $T^{\pm}$ , formed with R=Et the vicinal ${\sigma}_{c-c}-{\sigma}^{\ast}_{c-s}$ delocalization is the strongest with an optimum antiperiplanar arrangement and a narrow energy gap, ${\Delta}{\varepsilon}={\varepsilon}_{{\sigma}^{\ast}}-{\varepsilon}_{\sigma}$. Due to this charge transfer interaction, the stability of the intermediate increases (with the concomitant increase in the equilibrium constant K (= $k_a/k_{-a}$)) and also the leaving ability of the thiophenolate leaving group increases (and hence $k_b$ increases) so that the overall rate, $k_n\;=\;Kk_b$, is strongly enhanced. Theoretical support is provided by the natural bond orbital (NBO) analyses at the B3LYP/6-31+$G^{\ast}$ level. The anomaly exhibited by R=Et attests to the stepwise reaction mechanism in which the leaving group departure is rate limiting.