DOI QR코드

DOI QR Code

Anomalous Behavior of the Ethyl Group in the Aminolysis of S-Phenyl Acetate with Benzylamine in Acetonitrile

  • Published : 2002.02.20

Abstract

The rates of the aminolysis of S-phenyl substituted-acetate series $(RC(=O)SC_6H_4Z$, with R=Me, Et, i-Pr, t-Bu and Bn) with benzylamines $(XC_6H_4CH_2NH_2)$ are not correlated simply with the Taft's polar $({\sigma}^{\ast})$ and/or steric effect constants $(E_s)$ of the substituents due to abnormally enhanced rate of the substrate with R=Et. Furthermore, the cross-interaction constant, ${\rho}x_z$ , is the largest with R=Et. These anomalous behaviors can only be explained by invoking the vicinal bond $({\sigma})$-antibond $({\sigma}^{\ast})$ charge transfer interaction between C-$C{\alpha}$ and C-S bonds. In the tetrahedral zwitterionic intermediate, $T^{\pm}$ , formed with R=Et the vicinal ${\sigma}_{c-c}-{\sigma}^{\ast}_{c-s}$ delocalization is the strongest with an optimum antiperiplanar arrangement and a narrow energy gap, ${\Delta}{\varepsilon}={\varepsilon}_{{\sigma}^{\ast}}-{\varepsilon}_{\sigma}$. Due to this charge transfer interaction, the stability of the intermediate increases (with the concomitant increase in the equilibrium constant K (= $k_a/k_{-a}$)) and also the leaving ability of the thiophenolate leaving group increases (and hence $k_b$ increases) so that the overall rate, $k_n\;=\;Kk_b$, is strongly enhanced. Theoretical support is provided by the natural bond orbital (NBO) analyses at the B3LYP/6-31+$G^{\ast}$ level. The anomaly exhibited by R=Et attests to the stepwise reaction mechanism in which the leaving group departure is rate limiting.

Keywords

References

  1. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 1418
  2. Oh, H. K.; Yang, J. H.; Cho, I. H.; Lee, H. W.; Lee, I. Int. J. Chem. Kinet. 2001, 32, 485 https://doi.org/10.1002/1097-4601(2000)32:8<485::AID-KIN6>3.0.CO;2-X
  3. Oh, H. K.; Park, C. Y.; Lee, J. M.; Lee, I. Bull. Korean Chem. Soc. 2001, 22, 383
  4. Oh, H. K.; Kim, S. K.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 1017 https://doi.org/10.1007/BF02706930
  5. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  6. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  7. Lee, I.; Lee, H. W. Coll. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  8. Taft, R. W. Jr., In Steric Effects in Organic Chemistry; Newman. M. S., Ed.; Wiley: New York, 1956; ch. 13
  9. Klumpp, G. W. Reactivity in Organic Chemistry; Wiley: New York, 1982; ch. 3
  10. Epiotis, N. D.; Cherry, W. R.; Shaik, S. S.; Yates, R. L.; Bernardi, F. Structural Theory of Organic Chemistry; Springer-Verlag: Berlin, 1977; part I and IV.
  11. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. https://doi.org/10.1021/cr00088a005
  12. Glendening, E. D.; Weinhold, F. J. Comput. Chem. 1998, 19, 593. https://doi.org/10.1002/(SICI)1096-987X(19980430)19:6<593::AID-JCC3>3.0.CO;2-M
  13. Glendening, E. D.; Weinhold, F. J. Comput. Chem. 1998, 19, 610. https://doi.org/10.1002/(SICI)1096-987X(19980430)19:6<610::AID-JCC4>3.0.CO;2-U
  14. Glendening, E. D.; Badenhoop, J. K.; Weinhold, F. J. Comput. Chem. 1998, 19, 628. https://doi.org/10.1002/(SICI)1096-987X(19980430)19:6<628::AID-JCC5>3.0.CO;2-T
  15. Musso, G. F.; Figari, G.; Magnasco, V. J. Chem. Soc., Faraday Trans. 2 1985, 81, 1243. https://doi.org/10.1039/f29858101243
  16. Carballeira, L.; Perez-Juste, I. J. Phys. Chem. A 2000, 104, 9362. https://doi.org/10.1021/jp001937p
  17. Fleming, I. Frontier Orbitals and Organic Chemical Reactions; Wiley: London, 1976; ch. 4
  18. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  19. Lee, C.; Yong, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  20. Foresman, J. B.; Frisch, E. Exploring Chemistry with Electronic Structure Theory; Gaussian Inc.: Pittsburgh, 1993.
  21. Shaik, S. S.; Schlegel, H. B.; Wolfe, S. Theoretical Aspects of Physical Organic Chemistry. The $S_{N}2$ Mechanism; Wiley: New York, 1992; ch. 4.
  22. Mitchell, D. J.; Schlegel, H. B.; Shaik, S. S.; Wolfe, S. Can. J. Chem. 1985, 63, 1642. https://doi.org/10.1139/v85-276
  23. Lee, I. Chem. Soc. Rev. 1995, 24, 223 https://doi.org/10.1039/cs9952400223
  24. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780 https://doi.org/10.1021/jo970413r
  25. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 313
  26. Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 2306
  27. Lee, I.; Lee, D.; Kim, C. K. J. Phys. Chem. A 1997, 101, 879. https://doi.org/10.1021/jp961145o
  28. Lee, I.; Kim, C. K.; Li, H. K.; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee, B.-S. J. Am. Chem. Soc. 2000, 122, 11162. https://doi.org/10.1021/ja001814i
  29. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.6.; Gaussian, Inc.: Pittsburgh PA, 1998

Cited by

  1. -Bu, and Z = LG. vol.115, pp.15, 2011, https://doi.org/10.1021/jp201643d
  2. Nucleophilic substitution in ionizable Fischer thiocarbene complexes: steric effect of the alkyl substituent on the heteroatom vol.44, pp.12, 2015, https://doi.org/10.1039/C4DT03618B
  3. Kinetics and Mechanism of the Aminolysis of O-Methyl-S-Phenylthiocarbonates in Methanol vol.24, pp.1, 2002, https://doi.org/10.5012/bkcs.2003.24.1.091
  4. Effect of Amine Nature on Rates and Mechanism: Pyridinolyses of 4-Nitrophenyl Benzoate vol.24, pp.9, 2002, https://doi.org/10.5012/bkcs.2003.24.9.1245
  5. Effect of Nonleaving Group on the Reaction Rate and Mechanism: Aminolyses of 4-Nitrophenyl Acetate, Benzoate and Phenyl Carbonate vol.24, pp.9, 2002, https://doi.org/10.5012/bkcs.2003.24.9.1251
  6. Structure–reactivity correlations in nucleophilic substitution reactions of Y-substituted phenyl X-substituted benzoates with anionic and neutral nucleophiles vol.4, pp.15, 2002, https://doi.org/10.1039/b607194e
  7. Aminolyses of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Furoates: Effect of ortho-Substituent on Reactivity and Mechanism vol.29, pp.4, 2002, https://doi.org/10.5012/bkcs.2008.29.4.772