• Title/Summary/Keyword: Least-squares Regression

Search Result 568, Processing Time 0.023 seconds

FINDING EXPLICIT SOLUTIONS FOR LINEAR REGRESSION WITHOUT CORRESPONDENCES BASED ON REARRANGEMENT INEQUALITY

  • MIJIN KIM;HYUNGU LEE;HAYOUNG CHOI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.149-158
    • /
    • 2024
  • A least squares problem without correspondences is expressed as the following optimization: Π∈Pminm, x∈ℝn ║Ax-Πy║, where A ∈ ℝm×n and y ∈ ℝm are given. In general, solving such an optimization problem is highly challenging. In this paper we use the rearrangement inequalities to find the closed form of solutions for certain cases. Moreover, despite the stringent constraints, we successfully tackle the nonlinear least squares problem without correspondences by leveraging rearrangement inequalities.

Analysis of market share attraction data using LS-SVM (최소제곱 서포트벡터기계를 이용한 시장점유율 자료 분석)

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.879-886
    • /
    • 2009
  • The purpose of this article is to present the application of Least Squares Support Vector Machine in analyzing the existing structure of brand. We estimate the parameters of the Market Share Attraction Model using a non-parametric technique for function estimation called Least Squares Support Vector Machine, which allows us to perform even nonlinear regression by constructing a linear regression function in a high dimensional feature space. Estimation by Least Squares Support Vector Machine technique makes it a good candidate for solving the Market Share Attraction Model. To illustrate the performance of the proposed method, we use the car sales data in South Korea's car market.

  • PDF

A Study on the Improvement of the Accuracy for the Least-Squares Method Using Orthogonal Function (직교함수를 이용한 최소자승법의 정밀도 향상에 관한 연구)

  • Cho, Won Cheol;Lee, Jae Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.43-52
    • /
    • 1986
  • With increasing of computer use, a least squares method is now widely used in the regression analysis of various data. Unreliable results of regression coefficients due to the floating point of computer and problems of ordinary least squares method are described in detail. To improve these problems, a least squares method using orthogonal function is developed. Also, Comparison and analysis are performed through an example of numerical test, and re-orthogonalization method is used to increase the accuracy. As an example of application, the optimum order of AR process for the time series of monthly flow at the Pyungchang station is determined using Akaike's FPE(Final Prediction Error) which decides optimum degree of AR process. The result shows the AR(2) process is optimum to the series at the station.

  • PDF

Milling tool wear forecast based on the partial least-squares regression analysis

  • Xu, Chuangwen;Chen, Hualing
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.57-74
    • /
    • 2009
  • Power signals resulting from spindle and feed motor, present a rich content of physical information, the appropriate analysis of which can lead to the clear identification of the nature of the tool wear. The partial least-squares regression (PLSR) method has been established as the tool wear analysis method for this purpose. Firstly, the results of the application of widely used techniques are given and their limitations of prior methods are delineated. Secondly, the application of PLSR is proposed. The singular value theory is used to noise reduction. According to grey relational degree analysis, sample variable is filtered as part sample variable and all sample variables as independent variables for modelling, and the tool wear is taken as dependent variable, thus PLSR model is built up through adapting to several experimental data of tool wear in different milling process. Finally, the prediction value of tool wear is compare with actual value, in order to test whether the model of the tool wear can adopt to new measuring data on the independent variable. In the new different cutting process, milling tool wear was predicted by the methods of PLSR and MLR (Multivariate Linear Regression) as well as BPNN (BP Neural Network) at the same time. Experimental results show that the methods can meet the needs of the engineering and PLSR is more suitable for monitoring tool wear.

Robust Least Squares Motion Deblurring Using Inertial Sensor for Strapdown Image IR Sensors (스트랩다운 적외선 영상센서를 위한 관성센서 기반 강인최소자승 움직임 훼손영상 복원 기법)

  • Kim, Ki-Seung;Ra, Sung-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.314-320
    • /
    • 2012
  • This paper proposes a new robust motion deblurring filter using the inertial sensor measurements for strapdown image IR applications. With taking the PSF measurement error into account, the motion blurred image is modeled by the linear uncertain state space equation with the noise corrupted measurement matrix and the stochastic parameter uncertainty. This motivates us to solve the motion deblurring problem based on the recently developed robust least squares estimation theory. In order to suppress the ringing effect on the deblurred image, the robust least squares estimator is slightly modified by adoping the ridge-regression concept. Through the computer simulations using the actual IR scenes, it is demonstrated that the proposed algorithm shows superior and reliable motion deblurring performance even in the presence of time-varying motion artifact.

Least quantile squares method for the detection of outliers

  • Seo, Han Son;Yoon, Min
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.1
    • /
    • pp.81-88
    • /
    • 2021
  • k-least quantile of squares (k-LQS) estimates are a generalization of least median of squares (LMS) estimates. They have not been used as much as LMS because their breakdown points become small as k increases. But if the size of outliers is assumed to be fixed LQS estimates yield a good fit to the majority of data and residuals calculated from LQS estimates can be a reliable tool to detect outliers. We propose to use LQS estimates for separating a clean set from the data in the context of outlyingness of the cases. Three procedures are suggested for the identification of outliers using LQS estimates. Examples are provided to illustrate the methods. A Monte Carlo study show that proposed methods are effective.

GACV for partially linear support vector regression

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.391-399
    • /
    • 2013
  • Partially linear regression is capable of providing more complete description of the linear and nonlinear relationships among random variables. In support vector regression (SVR) the hyper-parameters are known to affect the performance of regression. In this paper we propose an iterative reweighted least squares (IRWLS) procedure to solve the quadratic problem of partially linear support vector regression with a modified loss function, which enables us to use the generalized approximate cross validation function to select the hyper-parameters. Experimental results are then presented which illustrate the performance of the partially linear SVR using IRWLS procedure.

On Confidence Intervals of Robust Regression Estimators (로버스트 회귀추정에 의한 신뢰구간 구축)

  • Lee Dong-Hee;Park You-Sung;Kim Kee-Whan
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.97-110
    • /
    • 2006
  • Since it is well-established that even high quality data tend to contain outliers, one would expect fat? greater reliance on robust regression techniques than is actually observed. But most of all robust regression estimators suffers from the computational difficulties and the lower efficiency than the least squares under the normal error model. The weighted self-tuning estimator (WSTE) recently suggested by Lee (2004) has no more computational difficulty and it has the asymptotic normality and the high break-down point simultaneously. Although it has better properties than the other robust estimators, WSTE does not have full efficiency under the normal error model through the weighted least squares which is widely used. This paper introduces a new approach as called the reweighted WSTE (RWSTE), whose scale estimator is adaptively estimated by the self-tuning constant. A Monte Carlo study shows that new approach has better behavior than the general weighted least squares method under the normal model and the large data.

Censored varying coefficient regression model using Buckley-James method

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1167-1177
    • /
    • 2017
  • The censored regression using the pseudo-response variable proposed by Buckley and James has been one of the most well-known models. Recently, the varying coefficient regression model has received a great deal of attention as an important tool for modeling. In this paper we propose a censored varying coefficient regression model using Buckley-James method to consider situations where the regression coefficients of the model are not constant but change as the smoothing variables change. By using the formulation of least squares support vector machine (LS-SVM), the coefficient estimators of the proposed model can be easily obtained from simple linear equations. Furthermore, a generalized cross validation function can be easily derived. In this paper, we evaluated the proposed method and demonstrated the adequacy through simulate data sets and real data sets.

Estimation of error variance in nonparametric regression under a finite sample using ridge regression

  • Park, Chun-Gun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1223-1232
    • /
    • 2011
  • Tong and Wang's estimator (2005) is a new approach to estimate the error variance using least squares method such that a simple linear regression is asymptotically derived from Rice's lag- estimator (1984). Their estimator highly depends on the setting of a regressor and weights in small sample sizes. In this article, we propose a new approach via a local quadratic approximation to set regressors in a small sample case. We estimate the error variance as the intercept using a ridge regression because the regressors have the problem of multicollinearity. From the small simulation study, the performance of our approach with some existing methods is better in small sample cases and comparable in large cases. More research is required on unequally spaced points.