• 제목/요약/키워드: Least-square method

검색결과 1,782건 처리시간 0.029초

유한요소법을 이용한 level set 공식화의 해석 (FINITE ELEMENT ANALYSIS OF LEVEL SET FORMULATION)

  • 최형권
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.223-227
    • /
    • 2009
  • In the present study, a least square weighted residual method and Taylor-Galerkin method were formulated and tested for the discretization of the two hyperbolic type equations of level set method; advection and reinitialization equations. The two approaches were compared by solving a time reversed vortex flow and three-dimensional broken dam flow by employing a four-step splitting finite element method for the solution of the incompressible Navier-Stokes equations. From the numerical experiments, it was shown that the least square method is more accurate and conservative than Taylor-Galerkin method and both methods are approximately first order accurate when both advection and reinitialization phase are involved in the evolution of free surface.

  • PDF

다중경로 상황에서의 전파 인자 기반 고각 추정 알고리즘 선택기법 (Propagation Factor Based Elevation Estimation Algorithm Selection Method in Multipath Situation)

  • 권대현
    • 한국항행학회논문지
    • /
    • 제28권2호
    • /
    • pp.172-177
    • /
    • 2024
  • 본 논문은 레이다로 다중경로 상황에서 고각 추정을 할 때 고각 추정 오차가 커지는 문제를 극복하기 위한 방법을 제시하였다. 다중경로 상황 이란, 동일한 표적에서 반사된 레이다의 수신신호가 여러경로에서 오는 것을 의미한다. 다중경로 상황이 아닐 때는 모노펄스 방식이 정확하고, 그 반대 상황이면 최소 제곱 오차 추정 방식이 정확하다. 다중경로 상황이면서 고각이 매우 낮을 경우, 최소 제곱 오차 추정이 발산하는 특이 경우가 발생한다. 이 특이경우를 전파 인자 기반으로 판별하여, 모노펄스와 최소 제곱 오차 추정 방식을 선택적으로 운용했다. 그 결과, 고각 추정의 정확도를 높이는 데 성공했다. 본 논문에서 제안한 방법을 검증하기 위하여 매트랩 시뮬레이션을 수행했다.

A General Semiparametric Additive Risk Model

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권2호
    • /
    • pp.421-429
    • /
    • 2008
  • We consider a general semiparametric additive risk model that consists of three components. They are parametric, purely and smoothly nonparametric components. In parametric component, time dependent term is known up to proportional constant. In purely nonparametric component, time dependent term is an unknown function, and time dependent term in smoothly nonparametric component is an unknown but smoothly function. As an estimation method of this model, we use the weighted least square estimation by Huffer and McKeague (1991). We provide an illustrative example as well as a simulation study that compares the performance of our method with the ordinary least square method.

  • PDF

PLS기반 c-퍼지 모델트리를 이용한 클로로필-a 농도 예측 (Chlorophyll-a Forcasting using PLS Based c-Fuzzy Model Tree)

  • 이대종;박상영;정남정;이혜근;박진일;전명근
    • 한국지능시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.777-784
    • /
    • 2006
  • 본 논문에서는 부분최소법 (PLS: Partial least square)과 c-퍼지 모델트리를 적용하여 클로로필-a 농도의 예측 모델을 제안한다. 제안된 방법은 모든 입력속성을 고려하여 퍼지 클러스터에 의해 계산된 중심벡터를 설정한 후, 각각의 중심벡터들과 입력속성간의 소속도를 이용하여 내부 노드를 형성하고, 형성된 내부노드에서 PLS를 적용하여 지역모델(Local model)을 구축한다. 노드의 분리기준으로서 부모노드(patent node)에서 구축된 모델에서 계산된 에러값이 자식노드(child node)에서 계산된 에러값보다 클 경우에 분기가 이루어진다. 최종 단계에서는 임의의 입력데이터와 잎노드에서 계산된 클러스터 중심값과 비교하여 소속도가 높은 클러스터에 속한 지역모델을 선택하여 출력값을 예측한다. 제안된 방법의 우수성을 보이기 위해 수질 데이터를 대상으로 실험한 결과 기존의 모델트리 방식에 비하여 향상된 성능을 보임을 알 수 있었다.

메이크헴 수명분포에 의존한 소프트웨어 평균고장간격시간에 관한 모수 추정법 비교 연구 (A Comparative Study of the Parameter Estimation Method about the Software Mean Time Between Failure Depending on Makeham Life Distribution)

  • 김희철;문송철
    • Journal of Information Technology Applications and Management
    • /
    • 제24권1호
    • /
    • pp.25-32
    • /
    • 2017
  • For repairable software systems, the Mean Time Between Failure (MTBF) is used as a measure of software system stability. Therefore, the evaluation of software reliability requirements or reliability characteristics can be applied MTBF. In this paper, we want to compare MTBF in terms of parameter estimation using Makeham life distribution. The parameter estimates used the least square method which is regression analyzer method and the maximum likelihood method. As a result, the MTBF using the least square method shows a non-decreased pattern and case of the maximum likelihood method shows a non-increased form as the failure time increases. In comparison with the observed MTBF, MTBF using the maximum likelihood estimation is smallerd about difference of interval than the least square estimation which is regression analyzer method. Thus, In terms of MTBF, the maximum likelihood estimation has efficient than the regression analyzer method. In terms of coefficient of determination, the mean square error and mean error of prediction, the maximum likelihood method can be judged as an efficient method.

암반내 A.E 계측 자료의 처리를 위한 신경 회로망의 적용성 연구 (Application of A Neural Network for the Data Processing of Acoustic Emission in Rock)

  • 이상은;임한욱
    • 산업기술연구
    • /
    • 제20권A호
    • /
    • pp.17-26
    • /
    • 2000
  • To determine the source location of acoustic emission in rock, the least square method has been used until lately but it needs much time and efforts. In this study, neural network system is applied to above model instead of least square method. This system has twenty seven input processing elements and three output processing element. The source locations calculated by above two methods are similarly concordant. The new method using neural network system is relatively simple and easy for calculating source location compared with traditional method.

  • PDF

Enhanced least square complex frequency method for operational modal analysis of noisy data

  • Akrami, V.;Zamani, S. Majid
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.263-273
    • /
    • 2018
  • Operational modal analysis is being widely used in aerospace, mechanical and civil engineering. Common research fields include optimal design and rehabilitation under dynamic loads, structural health monitoring, modification and control of dynamic response and analytical model updating. In many practical cases, influence of noise contamination in the recorded data makes it difficult to identify the modal parameters accurately. In this paper, an improved frequency domain method called Enhanced Least Square Complex Frequency (eLSCF) is developed to extract modal parameters from noisy recorded data. The proposed method makes the use of pre-defined approximate mode shape vectors to refine the cross-power spectral density matrix and extract fundamental frequency for the mode of interest. The efficiency of the proposed method is illustrated using an example five story shear frame loaded by random excitation and different noise signals.

A Improved Method of Determining Everett Function with Logarithm Function and Least Square Method

  • Hong, Sun-Ki
    • 조명전기설비학회논문지
    • /
    • 제22권7호
    • /
    • pp.16-21
    • /
    • 2008
  • For Preisach model, Everett function from the transient curves is needed to simulate the hysteresis phenomena. However it becomes very difficult to get the function if the it would be made only from experiments. In this paper, a simple and stable procedure using least square method and logarithm function to determine the Everett function which follows the Gauss distribution for interaction field axis is proposed. The characteristics of the parameters used in this procedure are also presented. The proposed method is applied to implement hysteresis loops. The simulation for hysteresis loop is compared with experiments and good agreements could be shown.

최소자승법을 이용한 타원의 검출 (Detection of Ellipses using Least Square Method)

  • 이주용;서요한;이웅기
    • 한국컴퓨터정보학회논문지
    • /
    • 제1권1호
    • /
    • pp.95-104
    • /
    • 1996
  • 하프변환은 영상에서 직선을 검출하는데 유용하고 강력한 기법이다 그러나. 전통적인 하프변환의 확장은 원과 타원을 복구하는데 늦은 속포라 과도한 메모리로 인해 제한되어 왔다. 본 논문은 최소자승법을 이용하여 영상에서 하원을 검출하는 방법을 제안한다. 이 방법은 계산비용과 메모리 요구를 감소시킨다. 타원을 검출할 때 타원의 매개변수를 결정하기 위해서 하프변환의 누적을 이용하지 않고 타원의 기하학적 특징을 포함하는 특별한 점을 선택했다. 타원의 매개변수는 그 특별한 점을 사용한 최소자승법으로 계산된다.

  • PDF

Asymmetric Least Squares Estimation for A Nonlinear Time Series Regression Model

  • Kim, Tae Soo;Kim, Hae Kyoung;Yoon, Jin Hee
    • Communications for Statistical Applications and Methods
    • /
    • 제8권3호
    • /
    • pp.633-641
    • /
    • 2001
  • The least squares method is usually applied when estimating the parameters in the regression models. However the least square estimator is not very efficient when the distribution of the error is skewed. In this paper, we propose the asymmetric least square estimator for a particular nonlinear time series regression model, and give the simple and practical sufficient conditions for the strong consistency of the estimators.

  • PDF