• Title/Summary/Keyword: Least-Square Algorithm

Search Result 891, Processing Time 0.022 seconds

Ideal Phase map Extraction Method and Filtering of Electronic Speckle Pattern Interferometry (ESPI 에서의 이상적인 위상도 추출과 필터링 방법)

  • 유원재;이주성;강영준;채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.235-238
    • /
    • 2001
  • Deformation phase can be obtained by using Least-Square Fitting. In extraction of phase values, Least-Square Fitting is superior to usual method like as 2, 3, 4-Bucket Algorithm. That can extract almost noise-free phase and retain 2$\pi$discontinuities. But more fringe in phase map, 2$\pi$ discontinuities is destroyed when that is filtered and reconstruction of deformation is not reliable. So, we adapted Least-Square Fitting using an isotropic window in dense fringe. using Sine-Cosine filter give us perfect 2$\pi$discontinuities information. We showed the process and result of extraction of phase map and filtering in this paper.

  • PDF

Ideal Phase map Extraction Method and Filtering of Electronic Speckle Pattern Interferometry (전자 스페클 간섭법에서의 이상적인 위상도 추출과 필터링 방법)

  • 강영준;이주성;박낙규;권용기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.20-26
    • /
    • 2002
  • Deformation phase can be obtained by using Least-Square fitting. In extraction of phase values, Least-Square Fitting is superior to usual method such as 2, 3, 4-Bucket Algorithm. That can extract almost noise-free phase and retain 2 $\pi$ discontinuities. But more fringes in phase map, 2 $\pi$ discontinuities are destroyed when that are filtered and reconstruction of deformation is not reliable. So, we adapted Least-Square fitting using an isotropic window in dense fringe. Using Sine/cosine filter give us perfect 2 $\pi$ discontinuities information. We showed the process and result of extraction of phase map and filtering in this paper.

New variable adaptive coefficient algorithm for variable circumstances (가변환경에 적합한 새로운 가변 적응 계수에 관한 연구)

  • 오신범;이채욱
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.3
    • /
    • pp.79-88
    • /
    • 1999
  • One of the most popular algorithm in adaptive signal processing is the least mean square(LMS) algorithm. The majority of these papers examine the LMS algorithm with a constant step size. The choice of the step size reflects a tradeoff between misadjustment and the speed of adaptation. Subsequent works have discussed the issue of optimization of the step size or methods of varying the step size to improve performance. However there is as yet no detailed analysis of a variable step size algorithm that is capable of giving both the speed of adaptation and convergence. In this paper we propose a new variable step size algorithm where the step size adjustment is controlled by square of the prediction error. The simulation results obtained using the new algorithm about noise canceller system and system identification are described. They are compared to the results obtained for other variable step size algorithm. function.

  • PDF

Comparison of Adaptive Algorithms for Active Noise Control (능동 소음 제어를 위한 적응 알고리즘들 비교)

  • Lee, Keun-Sang;Park, Young-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.1
    • /
    • pp.45-50
    • /
    • 2015
  • In this paper, we confirm the effective adaptive algorithm for tha active noise contorl (ANC) though the performance comparison between adaptive algorithms. Generally, the normalized least mean square (NLMS) algorithm has been widely used for an adaptive algorithm thanks to its simplicity and having a fast convergence speed. However, the convergence performance of the NLMS algorithms is often deteriorated by colored input signals. To overcome this problem, the affine pojection (AP) algorithm that updates the weight vector based on a number of recent input vectors can be used for allowing a higher convergence speed than the NLMS algorithm, but it is computationally complex. Thus, the proper algorithm were determined by the comparison between NLMS and AP algorithms regarding as the convergence performance and complexity. Simulation results confirmed that the noise reduction performance of NLMS algorithm was comparable to AP algorithm with low complexity. Therefore the NLMS algorithm is more effective for ANC system.

Harmonic Elimination and Reactive Power Compensation with a Novel Control Algorithm based Active Power Filter

  • Garanayak, Priyabrat;Panda, Gayadhar
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1619-1627
    • /
    • 2015
  • This paper presents a power system harmonic elimination using the mixed adaptive linear neural network and variable step-size leaky least mean square (ADALINE-VSSLLMS) control algorithm based active power filter (APF). The weight vector of ADALINE along with the variable step-size parameter and leakage coefficient of the VSSLLMS algorithm are automatically adjusted to eliminate harmonics from the distorted load current. For all iteration, the VSSLLMS algorithm selects a new rate of convergence for searching and runs the computations. The adopted shunt-hybrid APF (SHAPF) consists of an APF and a series of 7th tuned passive filter connected to each phase. The performance of the proposed ADALINE-VSSLLMS control algorithm employed for SHAPF is analyzed through a simulation in a MATLAB/Simulink environment. Experimental results of a real-time prototype validate the efficacy of the proposed control algorithm.

A Study on Adaptive Algorithm Based on Wavelet Transform for Adaptive Noise Canceler Improvement (적응잡음제거기의 성능향상을 위한 웨이브렛 기반 적응알고리즘에 관한 연구)

  • 이채욱;김도형;오신범
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.2
    • /
    • pp.68-73
    • /
    • 2002
  • Many paper about the adaptive algorithm based to LS(Least Square) to improve convergence speed are already presented. In this paper, we propose a wavelet based adaptive algorithm which improves the convergence speed and reduces computational complexity, and adapt two kinds of adaptive noise cancelers using the characteristic of speech signal. We compared the performance of the nosed algorithm with time and frequency domain adaptive algorithm using computer simulation of adaptive noise canceler based on synthesis speech. As the result the proposed algorithm is suitable for adaptive signal processing area using speech or acoustic signal.

  • PDF

Analysis of Bi-directional Filtered-x Least Mean Square Algorithm (양방향 Filtered-x 최소 평균 제곱 알고리듬에 대한 해석)

  • Kwon, Oh Sang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.133-142
    • /
    • 2014
  • The least mean square(LMS) algorithm has been popular owing to its simplicity, stability, and availability to implement. But it inherently has a problem of slow convergence speed, and the presence of a transfer function in the secondary path following the adaptive controller and the error path has been shown to generally degrade the stability and the performance of the LMS algorithm in applications of acoustical noise control. In general, in order to solve these problems, the filtered-x LMS (FX-LMS) type algorithms can be used and the bi-directional Filtered-x LMS(BFXLMS) algorithm is very attractive among them, which increase the convergence speed and the performance of the controller with nearly equivalent computation complexity. In this paper, a mathematical analysis for the BFXLMS algorithm is presented. In terms of view points of time domain, frequency domain, and stochastic domain, the characteristics and stabilities of algorithm is accurately analyzed.

Least Square Channel Estimation for Two-Way Relay MIMO OFDM Systems

  • Fang, Zhaoxi;Shi, Jiong
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.806-809
    • /
    • 2011
  • This letter considers the channel estimation for two-way relay MIMO OFDM systems. A least square (LS) channel estimation algorithm under block-based training is proposed. The mean square error (MSE) of the LS channel estimate is computed, and the optimal training sequences with respect to this MSE are derived. Some numerical examples are presented to evaluate the performance of the proposed channel estimation method.

An improved sparsity-aware normalized least-mean-square scheme for underwater communication

  • Anand, Kumar;Prashant Kumar
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.379-393
    • /
    • 2023
  • Underwater communication (UWC) is widely used in coastal surveillance and early warning systems. Precise channel estimation is vital for efficient and reliable UWC. The sparse direct-adaptive filtering algorithms have become popular in UWC. Herein, we present an improved adaptive convex-combination method for the identification of sparse structures using a reweighted normalized leastmean-square (RNLMS) algorithm. Moreover, to make RNLMS algorithm independent of the reweighted l1-norm parameter, a modified sparsity-aware adaptive zero-attracting RNLMS (AZA-RNLMS) algorithm is introduced to ensure accurate modeling. In addition, we present a quantitative analysis of this algorithm to evaluate the convergence speed and accuracy. Furthermore, we derive an excess mean-square-error expression that proves that the AZA-RNLMS algorithm performs better for the harsh underwater channel. The measured data from the experimental channel of SPACE08 is used for simulation, and results are presented to verify the performance of the proposed algorithm. The simulation results confirm that the proposed algorithm for underwater channel estimation performs better than the earlier schemes.

SPEECH ENHANCEMENT BY FREQUENCY-WEIGHTED BLOCK LMS ALGORITHM

  • Cho, D.H.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1985.10a
    • /
    • pp.87-94
    • /
    • 1985
  • In this paper, enhancement of speech corrupted by additive white or colored noise is stuided. The nuconstrained frequency-domain block least-mean-square (UFBLMS) adaptation algorithm and its frequency-weighted version are newly applied to speech enhancement. For enhancement of speech degraded by white noise, the performance of the UFBLMS algorithm is superior to the spectral subtraction method or Wiener filtering technique by more than 3 dB in segmented frequency-weighted signal-to-noise ratio(FWSNERSEG) when SNR of speech is in the range of 0 to 10 dB. As for enhancement of noisy speech corrupted by colored noise, the UFBLMS algorithm is superior to that of the spectral subtraction method by about 3 to 5 dB in FWSNRSEG. Also, it yields better performance by about 2 dB in FWSNR and FWSNRSEG than that of time-domain least-mean-square (TLMS) adaptive prediction filter(APF). In view of the computational complexity and performance improvement in speech quality and intelligibility, the frequency-weighted UFBLMS algorithm appears to yield the best performance among various algorithms in enhancing noisy speech corrupted by white or colored noise.

  • PDF