• Title/Summary/Keyword: Least squares solution

Search Result 204, Processing Time 0.022 seconds

Determination of water content in alcohol by portable near infrared (NIR) system (휴대용 분광분석기를 이용한 알코올 중에 함유되어 있는 물의 측정)

  • Ahn, Jhii-Weon;Woo, Young-Ah;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.95-101
    • /
    • 2003
  • In this study, water content in the mixture of methanol and ethanol was nondestructively measured by near infrared (NIR) spectroscopy. Two types of NIR instruments, portable NIR system with a photo-diode array and scanning type NIR spectrometer were used and the calibration results were compared. Partial least squares regression (PLSR) was applied for the calibration and validation for the quantitative analysis. The calibration results from both instruments showed good correlation with actual values. The calibration with the use of PLS model predicted water concentration with a standard error of prediction (SEP) of 0.10% and 0.12% for photo diode array and scanning type, respectively. During 6 days, routine analyses for 3%, 5% and 7% water in ethanol solution with 2% methanol were performed to validate the robustness of the developed calibration model. The routine analyses showed good results with coefficient of variation (CV) of within 3% for both types of NIR spectrometers. This study showed that the rapid determination of water in the mixture of methanol and ethanol was successfully performed by NIR spectroscopy and the performance of the portable NIR system with a photo diode array detector was comparable to that of the scanning type NIR spectrometer.

An Adaptive FLIP-Levelset Hybrid Method for Efficient Fluid Simulation (효율적인 유체 시뮬레이션을 위한 FLIP과 레벨셋의 적응형 혼합 기법)

  • Lim, Jae-Gwang;Kim, Bong-Jun;Hong, Jeong-Mo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.19 no.3
    • /
    • pp.1-11
    • /
    • 2013
  • Fluid Implicit Particle (FLIP) method is used in Visual Effect(VFX) industries frequently because FLIP based simulation show high performance with good visual quality. However in large-scale fluid simulations, the efficiency of FLIP method is low because it requires many particles to represent large volume of water. In this papers, we propose a novel hybrid method of simulating fluids to supplement this drawback. To improve the performance of the FLIP method by reducing the number of particles, particles are deployed inside thin layers of the inner surface of water volume only. The coupling between less-disspative solutions of FLIP method and viscosity solution of level set method is achieved by introducing a new surface reconstruction method motivated by surface reconstruction method[1] and moving least squares(MLS) method[2]. Our hybrid method can generate high quality of water simulations efficiently with various multiscale features.

Identification of Fuzzy Inference Systems Using a Multi-objective Space Search Algorithm and Information Granulation

  • Huang, Wei;Oh, Sung-Kwun;Ding, Lixin;Kim, Hyun-Ki;Joo, Su-Chong
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.853-866
    • /
    • 2011
  • We propose a multi-objective space search algorithm (MSSA) and introduce the identification of fuzzy inference systems based on the MSSA and information granulation (IG). The MSSA is a multi-objective optimization algorithm whose search method is associated with the analysis of the solution space. The multi-objective mechanism of MSSA is realized using a non-dominated sorting-based multi-objective strategy. In the identification of the fuzzy inference system, the MSSA is exploited to carry out parametric optimization of the fuzzy model and to achieve its structural optimization. The granulation of information is attained using the C-Means clustering algorithm. The overall optimization of fuzzy inference systems comes in the form of two identification mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and the polynomial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by the MSSA and C-Means, whereas the parameter identification is realized via the MSSA and least squares method. The evaluation of the performance of the proposed model was conducted using three representative numerical examples such as gas furnace, NOx emission process data, and Mackey-Glass time series. The proposed model was also compared with the quality of some "conventional" fuzzy models encountered in the literature.

A Spatially Adaptive Post-processing Filter to Remove Blocking Artifacts of H.264 Video Coding Standard (H.264 동영상 표준 부호화 방식의 블록화 현상 제거를 위한 적응적 후처리 기법)

  • Choi, Kwon-Yul;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8C
    • /
    • pp.583-590
    • /
    • 2008
  • In this paper, we present a spatially adaptive post-processing algorithm for H.264 video coding standard to remove blocking artifacts. The loop filter of H.264 increases computational complexity of the encoder. Furthermore it doesn't clearly remove the blocking artifacts, resulting in over-blurring. For overcoming them, we combine the projection method with the Constraint Least Squares(CLS) method to restore the high quality image. To reflect the Human Visual System, we adopt the weight norm CLS method. Particularly pixel location-based local variance and laplacian operator are newly defined for the CLS method. In addition, the fact that correlation among adjoining pixels is high is utilized to constrain the solution space when the projection method is applied. Quantization Index(QP) of H.264 is also used to control the degree of smoothness. The simulation results show that the proposed post-processing filter works better than the loop filter of H.264 and converges more quickly than the CLS method.

On B-spline Approximation for Representing Scattered Multivariate Data (비정렬 다변수 데이터의 B-스플라인 근사화 기법)

  • Park, Sang-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.921-931
    • /
    • 2011
  • This paper presents a data-fitting technique in which a B-spline hypervolume is used to approximate a given data set of scattered data samples. We describe the implementation of the data structure of a B-spline hypervolume, and we measure its memory size to show that the representation is compact. The proposed technique includes two algorithms. One is for the determination of the knot vectors of a B-spline hypervolume. The other is for the control points, which are determined by solving a linear least-squares minimization problem where the solution is independent of the data-set complexity. The proposed approach is demonstrated with various data-set configurations to reveal its performance in terms of approximation accuracy, memory use, and running time. In addition, we compare our approach with existing methods and present unconstrained optimization examples to show the potential for various applications.

A Parameter Estimation Method using Nonlinear Least Squares (비선형 최소제곱법을 이용한 모수추정 방법론)

  • Oh, Suna;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.431-440
    • /
    • 2013
  • We consider the problem of estimating the parameters of heavy tailed distributions. In general, maximum likelihood estimation(MLE) is the most preferred method of parameter estimation because it has good properties such as asymptotic consistency, normality and efficiency. However, MLE is not always the best solution because MLE is unstable or does not exist in some cases. This paper proposes another parameter estimation method, non-linear least squares(NLS) and compares its performance to MLE. The NLS estimator is achieved by minimizing sum of squared difference between empirical cumulative distribution function(CDF) and a theoretical distribution function. In this article, we compare the NLS method to MLE using simulated data from heavy tailed distributions. The NLS method is shown to perform better than MLE in Burr distribution when the sample size is small; in addition, it performs well in a Frechet distribution.

Analysis for Torsion of Hollow Beam by Least Squares and Boundary Elements Method (최소자승법 및 경계요소에 의한 중공단면 보의 비틀림 해석)

  • Kim, Chi-Kyung;Bae, Joon-Tai
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.175-182
    • /
    • 2012
  • In this paper we are concerned with the performance of structural stability of torsion in square cross section of a beam with holes. The critical load is defined as the smallest load at which the equilibrium of the structure fails to be stable as the load is slowly increased from zero. The beams subjected to torsion are frequently encountered in general structures and these forces influence to the stability of structure. The boundary element method is found to be very efficient and accurate for the analysis of torsion problems including complex boundary conditions with respect to its simplicity and generality. In this paper, it is required to derive the boundary element formulation for torsion problem and integrate directly on the discrete boundary. To investigate the validity of the developed computer program, three distinctly solid cross-sections which are elliptical, rectangular and triangular one are analyzed, and comparisons are made with analytical approaches where these can also be used.

Low-Complexity Handheld 3-D Scanner Using a Laser Pointer (단일 레이저 포인터를 이용한 저복잡도 휴대형 3D 스캐너)

  • Lee, Kyungme;Lee, Yeonkyung;Park, Doyoung;Yoo, Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.458-464
    • /
    • 2015
  • This paper proposes a portable 3-D scanning technique using a laser pointer. 3-D scanning is a process that acquires surface information from an 3-D object. There have been many studies on 3-D scanning. The methods of 3-D scanning are summarized into some methods based on multiple cameras, line lasers, and light pattern recognition. However, those methods has major disadvantages of their high cost and big size for portable appliances such as smartphones and digital cameras. In this paper, a 3-D scanning system using a low-cost and small-sized laser pointer are introduced to solve the problems. To do so, we propose a 3-D localization technique for a laser point. The proposed method consists of two main parts; one is a fast recognition of input images to obtain 2-D information of a point laser and the other is calibration based on the least-squares technique to calculate the 3-D information overall. To verified our method, we carry out experiments. It is proved that the proposed method provides 3-D surface information although the system is constructed by extremely low-cost parts such a chip laser pointer, compared to existing methods. Also, the method can be implemented in small-size; thus, it is enough to use in mobile devices such as smartphones.

Development, Demonstration and Validation of the Deep Space Orbit Determination Software Using Lunar Prospector Tracking Data

  • Lee, Eunji;Kim, Youngkwang;Kim, Minsik;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.213-223
    • /
    • 2017
  • The deep space orbit determination software (DSODS) is a part of a flight dynamic subsystem (FDS) for the Korean Pathfinder Lunar Orbiter (KPLO), a lunar exploration mission expected to launch after 2018. The DSODS consists of several sub modules, of which the orbit determination (OD) module employs a weighted least squares algorithm for estimating the parameters related to the motion and the tracking system of the spacecraft, and subroutines for performance improvement and detailed analysis of the orbit solution. In this research, DSODS is demonstrated and validated at lunar orbit at an altitude of 100 km using actual Lunar Prospector tracking data. A set of a priori states are generated, and the robustness of DSODS to the a priori error is confirmed by the NASA planetary data system (PDS) orbit solutions. Furthermore, the accuracy of the orbit solutions is determined by solution comparison and overlap analysis as about tens of meters. Through these analyses, the ability of the DSODS to provide proper orbit solutions for the KPLO are proved.

Analysis of Interface Problem using the MLS Difference Method with Interface Condition Embedment (계면경계조건이 매입된 이동최소제곱 차분법을 이용한 계면경계문제 해석)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.215-222
    • /
    • 2019
  • The heat conduction problem with discontinuous material coefficients generally consists of the conservative equation, boundary condition, and interface condition, which should be additionally satisfied in the solution procedure. This feature often makes the development of new numerical schemes difficult as it induces a layered singularity in the solution fields; thus, a special approximation is required to capture the singular behavior. In addition to the approximation, the construction of a total system of equations is challenging. In this study, a wedge function is devised for enriching the approximation, and the interface condition itself is embedded in the moving least squares(MLS) derivative approximation to consistently satisfy the interface condition. The heat conduction problem is then discretized in a strong form using the developed derivative approximation, which is named as the interface immersed MLS difference method. This method is able to efficiently provide a numerical solution for such interface problems avoiding both numerical quadrature as well as extra difference equations related to the interface condition enforcement. Numerical experiments proved that the developed numerical method was highly accurate and computationally efficient at solving the heat conduction problem with interfacial jump as well as the problem with a geometrically induced interfacial singularity.