• Title/Summary/Keyword: Least square-based optimization

Search Result 86, Processing Time 0.023 seconds

SIZE OPTIMIATION OF AN ENGINE ROOM MEMBER FOR CRASHWORTHINESS USING RESPONSE SURFACE METHOD

  • Oh, S.;Ye, B.W.;Sin, H.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • The frontal crash optimization of an engine room member using the response surface method was studied. The engine room member is composed of the front side member and the sub-frame. The thicknesses of the panels on the front side member and the sub-frame were selected as the design variables. The purpose of the optimization was to reduce the weight of the structure, under the constraint that the objective quantity of crash energy is absorbed. The response surface method was used to approximate the crash behavior in mathematical form for optimization procedure. To research the effect of the regression method, two different methodologies were used in constructing the response surface model, the least square method and the moving least square method. The optimum with the two methods was verified by the simulation result. The precision of the surrogate model affected the optimal design. The moving least square method showed better approximation than the least square method. In addition to the deterministic optimization, the reliability-based design optimization using the response surface method was executed to examine the effect of uncertainties in design variables. The requirement for reliability made the optimal structure be heavier than the result of the deterministic optimization. Compared with the deterministic optimum, the optimal design using the reliability-based design optimization showed higher crash energy absorption and little probability of failure in achieving the objective.

Optimization of sensor location for source localization : Minimum-Norm Least-Square Method (신호원 국소화를 위한 위치의 최적화 : MNLS)

  • 김유정;한주만;이인범;박광석
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.124-126
    • /
    • 2000
  • The Minimum-Norm Least-Square(MNLS) approach based on lead field theory is an useful method to find an unique inverse solution for the measured magnetic field. The lead field depends on head geometry and location of sources and sensors. So, optimization of sensor array location is important issue for MNLS estimation. In this paper, we present an investigation for the optimization of sensor array location in computer simulation.

  • PDF

Optimization of Thinned Antenna Arrays using a Least Square Method

  • Chang Byong Kun;Dae Jeon Chang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.165-168
    • /
    • 1999
  • This paper concerns a least square approach to optimizing a thinned antenna array with respect to antenna spacing to improve the sidelobe performance. A least square method based on a modified version of the modified perturbation method is proposed to efficiently synthesize an optimum pattern in a thinned array. It is demonstrated that the array performance improves with the proposed method, compared with the conventional method.

  • PDF

Parameter Identification of Robot Hand Tracking Model Using Optimization (최적화 기법을 이용한 로봇핸드 트래킹 모델의 파라미터 추정)

  • Lee, Jong-Kwang;Lee, Hyo-Jik;Yoon, Kwang-Ho;Park, Byung-Suk;Yoon, Ji-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.467-473
    • /
    • 2007
  • In this paper, we present a position-based robot hand tracking scheme where a pan-tilt camera is controlled such that a robot hand is always shown in the center of an image frame. We calculate the rotation angles of a pan-tilt camera by transforming the coordinate systems. In order to identify the model parameters, we applied two optimization techniques: a nonlinear least square optimizer and a particle swarm optimizer. From the simulation results, it is shown that the considered parameter identification problem is characterized by a highly multimodal landscape; thus, a global optimization technique such as a particle swarm optimization could be a promising tool to identify the model parameters of a robot hand tracking system, whereas the nonlinear least square optimizer often failed to find an optimal solution even when the initial candidate solutions were selected close to the true optimum.

Unsupervised Endmember Selection Optimization Process based on Constrained Linear Spectral Unmixing of Hyperion Image (Hyperion 영상의 제약선형분광혼합분석 기반 무감독 Endmember 추출 최적화 기법)

  • Choi Jae-Wan;Kim Yong-Il;Yu Ki-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.211-216
    • /
    • 2006
  • The Constrained Linear Spectral Unmixing(CLSU) is investigated for sub-pixel image processing, Its result is the abundance map which mean fractions of endmember existing in a mixed pixel. Compared to the Linear Spectral Unmixing using least square method, CLSU uses the NNLS (Non-Negative Least Square) algorithm to guarantee that the estimated fractions are constrained. But, CLSU gets Into difficulty in image processing due to select endmember at a user's disposition. In this study, endmember selection optimization method using entropy in the error-image analysis is proposed. In experiments which is used hyperion image, it is shown that our method can select endmember number than CLSU based on unsupervised endemeber selection.

  • PDF

Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization (PSO를 이용한 FCM 기반 RBF 뉴럴 네트워크의 최적화)

  • Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2108-2116
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set.

Reliability Based Design Optimization using Moving Least Squares (이동최소자승법을 이용한 신뢰성 최적설계)

  • Park, Jang-Won;Lee, Oh-Young;Im, Jong-Bin;Lee, Soo-Yong;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.438-447
    • /
    • 2008
  • This study is focused on reliability based design optimization (RBDO) using moving least squares. A response surface is used to derive a limit-state equation for reliability based design optimization. Response surface method (RSM) with least square method (LSM) or Kriging will be used as a response surface. RSM is fast to make the response surface. On the other hand, RSM has disadvantage to make the response surface of nonlinear equation. Kriging can make the response surface in nonlinear equation precisely but needs considerable amount of computations. The moving least square method (MLSM) is made of both methods (RSM with LSM+Kriging). Numerical results by MLSM are compared with those by LMS in Rosenbrock function and six-hump carmel back function. The RBDO of engine duct of smart UAV is pursued in this paper. It is proved that RBDO is useful tool for aerospace structural optimal design problems.

Optimization of Parameters for LCL Filter of Least Square Method Based Three-phase PWM Converter

  • Zheng, Hong;Liang, Zheng-feng;Li, Meng-shu;Li, Kai
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1626-1634
    • /
    • 2015
  • LCL filters are widely used in three-phase PWM converter for its advantages of small volume, low cost and inhibition of high frequency current harmonic. However, it is difficult to optimize its design because its parameters are mutually influenced while the value of each parameter for LCL filter has impacts on the converter's cost and size. In this paper, the target of optimization is to minimize the parameter values of LCL filter, and an optimization method for parameters of LCL filter of three-phase PWM converter based on least square method is proposed. With this method, a quantitative calculation of the harmonic component of the converter’s side phase voltage is performed first, and then the quantitative relationship between phase voltage harmonics and grid phase current harmonics is analyzed. After that, the attenuation requirement of each harmonic is obtained by taking into account the requirements for each harmonic component of grid current. Then according to the optimization objective, the objective function with minimum harmonic attenuation deviation is established, and least squares method is adopted for three-dimensional global searching of parameters for LCL filter. Thus, the designed harmonic attenuation curve approximates the minimum attenuation requirements, and the optimized LCL filter parameters are obtained. Finally, the effectiveness of the method is verified by the experiments.

Parallel Implementation of the Recursive Least Square for Hyperspectral Image Compression on GPUs

  • Li, Changguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3543-3557
    • /
    • 2017
  • Compression is a very important technique for remotely sensed hyperspectral images. The lossless compression based on the recursive least square (RLS), which eliminates hyperspectral images' redundancy using both spatial and spectral correlations, is an extremely powerful tool for this purpose, but the relatively high computational complexity limits its application to time-critical scenarios. In order to improve the computational efficiency of the algorithm, we optimize its serial version and develop a new parallel implementation on graphics processing units (GPUs). Namely, an optimized recursive least square based on optimal number of prediction bands is introduced firstly. Then we use this approach as a case study to illustrate the advantages and potential challenges of applying GPU parallel optimization principles to the considered problem. The proposed parallel method properly exploits the low-level architecture of GPUs and has been carried out using the compute unified device architecture (CUDA). The GPU parallel implementation is compared with the serial implementation on CPU. Experimental results indicate remarkable acceleration factors and real-time performance, while retaining exactly the same bit rate with regard to the serial version of the compressor.

Design of Particle Swarm Optimization-based Polynomial Neural Networks (입자 군집 최적화 알고리즘 기반 다항식 신경회로망의 설계)

  • Park, Ho-Sung;Kim, Ki-Sang;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.398-406
    • /
    • 2011
  • In this paper, we introduce a new architecture of PSO-based Polynomial Neural Networks (PNN) and discuss its comprehensive design methodology. The conventional PNN is based on a extended Group Method of Data Handling (GMDH) method, and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons located in each layer through a growth process of the network. Moreover it does not guarantee that the conventional PNN generated through learning results in the optimal network architecture. The PSO-based PNN results in a structurally optimized structure and comes with a higher level of flexibility that the one encountered in the conventional PNN. The PSO-based design procedure being applied at each layer of PNN leads to the selection of preferred PNs with specific local characteristics (such as the number of input variables, input variables, and the order of the polynomial) available within the PNN. In the sequel, two general optimization mechanisms of the PSO-based PNN are explored: the structural optimization is realized via PSO whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the PSO-based PNN, the model is experimented with using Gas furnace process data, and pH neutralization process data. For the characteristic analysis of the given entire data with non-linearity and the construction of efficient model, the given entire system data is partitioned into two type such as Division I(Training dataset and Testing dataset) and Division II(Training dataset, Validation dataset, and Testing dataset). A comparative analysis shows that the proposed PSO-based PNN is model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.