• Title/Summary/Keyword: Least Square Error Minimization

Search Result 22, Processing Time 0.021 seconds

Alternative numerical method for identification of flutter on free vibration

  • Chun, Nakhyun;Moon, Jiho;Lee, Hak-Eun
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.351-365
    • /
    • 2017
  • The minimization method is widely used to predict the dynamic characteristics of a system. Generally, data recorded by experiment (for example displacement) tends to contain noise, and the error in the properties of the system is proportional to the noise level (NL). In addition, the accuracy of the results depends on various factors such as the signal character, filtering method or cut off frequency. In particular, coupled terms in multimode systems show larger differences compared to the true value when measured in an environment with a high NL. The iterative least square (ILS) method was proposed to reduce these errors that occur under a high NL, and has been verified in previous research. However, the ILS method might be sensitive to the signal processing, including the determination of cutoff frequency. This paper focused on improving the accuracy of the ILS method, and proposed the modified ILS (MILS) method, which differs from the ILS method by the addition of a new calculation process based on correlation coefficients for each degree of freedom. Comparing the results of these systems with those of a numerical simulation revealed that both ILS and the proposed MILS method provided good prediction of the dynamic properties of the system under investigation (in this case, the damping ratio and damped frequency). Moreover, the proposed MILS method provided even better prediction results for the coupling terms of stiffness and damping coefficient matrix.

Derivation of Parameters for Loudspeaker with Frequency Dependent Terms and Discussion for Estimation Methods (라우드스피커 주파수 종속 매개변수 유도 및 규명법 비교)

  • Park, Seok-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.276-285
    • /
    • 2007
  • In this paper it was discussed and compared measured loudspeaker impedance curve with ones reconstructed by TS parameters estimated using four kinds of parameter estimation methods developed in frequency domain. Frequency dependent parameters were introduced and derived using least square error minimization technique. For known dynamic mass TS parameter estimation methods were reviewed and also proved non-uniqueness of these parameters by simulation method. Minimum phase transformation was adopted to derive phase information from magnitude of loudspeaker electrical impedance curve measured by one channel analyzer.