• Title/Summary/Keyword: Least Square

Search Result 3,129, Processing Time 0.027 seconds

Design-based Properties of Least Square Estimators in Panel Regression Model (패널회귀모형에서 회귀계수 추정량의 설계기반 성질)

  • Kim, Kyu-Seong
    • Survey Research
    • /
    • v.12 no.3
    • /
    • pp.49-62
    • /
    • 2011
  • In this paper we investigate design-based properties of both the ordinary least square estimator and the weighted least square estimator for regression coefficients in panel regression model. We derive formulas of approximate bias, variance and mean square error for the ordinary least square estimator and approximate variance for the weighted least square estimator after linearization of least square estimators. Also we compare their magnitudes each other numerically through a simulation study. We consider a three years data of Korean Welfare Panel Study as a finite population and take household income as a dependent variable and choose 7 exploratory variables related household as independent variables in panel regression model. Then we calculate approximate bias, variance, mean square error for the ordinary least square estimator and approximate variance for the weighted least square estimator based on several sample sizes from 50 to 1,000 by 50. Through the simulation study we found some tendencies as follows. First, the mean square error of the ordinary least square estimator is getting larger than the variance of the weighted least square estimator as sample sizes increase. Next, the magnitude of mean square error of the ordinary least square estimator is depending on the magnitude of the bias of the estimator, which is large when the bias is large. Finally, with regard to approximate variance, variances of the ordinary least square estimator are smaller than those of the weighted least square estimator in many cases in the simulation.

  • PDF

Algorithms for bivariate time series modeling in small size computers (2변수 시계열 모델 산출을 위한 소형컴퓨터용 알고리즘)

  • 김광준;문인혁;박병호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.108-112
    • /
    • 1986
  • Several algorithms for bivariate time series modeling are reviewed : linear least square, nonlinear least squares, generalized least square, and multi-stage least square methods. Estimation results of simulated data by the above methods are discussed.

  • PDF

LEAST-SQUARE SWITCHING PROCESS FOR ACCURATE AND EFFICIENT GRADIENT ESTIMATION ON UNSTRUCTURED GRID

  • SEO, SEUNGPYO;LEE, CHANGSOO;KIM, EUNSA;YUNE, KYEOL;KIM, CHONGAM
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.1-22
    • /
    • 2020
  • An accurate and efficient gradient estimation method on unstructured grid is presented by proposing a switching process between two Least-Square methods. Diverse test cases show that the gradient estimation by Least-Square methods exhibit better characteristics compared to Green-Gauss approach. Based on the investigation, switching between the two Least-Square methods, whose merit complements each other, is pursued. The condition number of the Least-Square matrix is adopted as the switching criterion, because it shows clear correlation with the gradient error, and it can be easily calculated from the geometric information of the grid. To illustrate switching process on general grid, condition number is analyzed using stencil vectors and trigonometric relations. Then, the threshold of switching criterion is established. Finally, the capability of Switching Weighted Least-Square method is demonstrated through various two- and three-dimensional applications.

Reexamination of Estimating Beta Coecient as a Risk Measure in CAPM

  • Phuoc, Le Tan;Kim, Kee S.;Su, Yingcai
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.5 no.1
    • /
    • pp.11-16
    • /
    • 2018
  • This research examines the alternative ways of estimating the coefficient of non-diversifiable risk, namely beta coefficient, in Capital Asset Pricing Model (CAPM) introduced by Sharpe (1964) that is an essential element of assessing the value of diverse assets. The non-parametric methods used in this research are the robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator). The Jackknife, the resampling technique, is also employed to validate the results. According to finance literature and common practices, these coecients have often been estimated using Ordinary Least Square (LS) regression method and monthly return data set. The empirical results of this research pointed out that the robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator) performed much better than Ordinary Least Square (LS) in terms of eciency for large-cap stocks trading actively in the United States markets. Interestingly, the empirical results also showed that daily return data would give more accurate estimation than monthly return data in both Ordinary Least Square (LS) and robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator) regressions.

Performance Improvement of a Modified Perturbation Method via a Least Square Approach for Sensor Arrays

  • Chang, Byong-Kun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4E
    • /
    • pp.37-42
    • /
    • 1999
  • This paper concerns a modified perturbation method and a least square approach to synthesize an optimum beam pattern of a thinned sensor array with respect to element spacing. In the modified perturbation, the antenna spacing is perturbed iteratively such that the sidelobes are equalized via a linear programming approach. The least square approach is proposed to improve the array performance for the thinned array using the fact that the number of sidelobes is more than the number of element spacings. It is demonstrated that the least square approach performs better than the modified perturbation method.

  • PDF

Approximate Variance of Least Square Estimators for Regression Coefficient under Inclusion Probability Proportional to Size Sampling (포함확률비례추출에서 회귀계수 최소제곱추정량의 근사분산)

  • Kim, Kyu-Seong
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.23-32
    • /
    • 2012
  • This paper deals with the bias and variance of regression coefficient estimators in a finite population. We derive approximate formulas for the bias, variance and mean square error of two estimators when we select a fixed-size inclusion probability proportional to the size sample and then estimate regression coefficients by the ordinary least square estimator as well as the weighted least square estimator based on the selected sample data. Necessary and sufficient conditions for the comparison of the two estimators in terms of variance and mean square error are suggested. In addition, a simple example is introduced to numerically compare the variance and mean square error of the two estimators.

Metric Defined by Wavelets and Integra-Normalizer (웨이브렛과 인테그라-노말라이저를 이용한 메트릭)

  • Kim, Sung-Soo;Park, Byoung-Seob
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.350-353
    • /
    • 2001
  • In general, the Least Square Error method is used for signal classification to measure distance in the $l^2$ metric or the $L^2$ metric space. A defect of the Least Square Error method is that it does not classify properly some waveforms, which is due to the property of the Least Square Error method: the global analysis. This paper proposes a new linear operator, the Integra-Normalizer, that removes the problem. The Integra-Normalizer possesses excellent property that measures the degree of relative similarity between signals by expanding the functional space with removing the restriction on the functional space inherited by the Least Square Error method. The Integra-Normalizer shows superiority to the Least Square Error method in measuring the relative similarity among one dimensional waveforms.

  • PDF

Study on The Suggested Curve Fitting Algorithm for Bolt Clamping Force Measurement (볼트 체결력 측정을 위해 제안한 커브피팅 알고리즘에 관한 연구)

  • Lee, Ki-Won
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.94-98
    • /
    • 2012
  • In order to serve the exact torque clamping force, the torque measurement system use the curve fitting algorithm by the least square. The corrected least square curve fitting algorithm which suggested in this paper can surpport more exact clamping force for fastner in variable industry field using the torque. At first, This paper introduces mathematical modeling for curve fitting algorithm, and simulate it. As a result, the corrected least square algorithm have shown lower standard error value than that of the used algoritm with torque, and so this corrected least square algorithm prove high accuracy than nomal least square algorithm. The suggested algorithm will contribute to improvement of cost and safety on industry field with bolt clamping force for precision industry parts, electronics parts, aircraft, aerospace, etc.

Quasi-Likelihood Approach for Linear Models with Censored Data

  • Ha, Il-Do;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.219-225
    • /
    • 1998
  • The parameters in linear models with censored normal responses are usually estimated by the iterative maximum likelihood and least square methods. However, the iterative least square method is simple but hardly has theoretical justification, and the iterative maximum likelihood estimating equations are complicatedly derived. In this paper, we justify these methods via Wedderburn (1974)'s quasi-likelihood approach. This provides an explicit justification for the iterative least square method and also directly the iterative maximum likelihood method for estimating the regression coefficients.

  • PDF