• Title/Summary/Keyword: Least Significant Bit

Search Result 102, Processing Time 0.029 seconds

Program Cache Busy Time Control Method for Reducing Peak Current Consumption of NAND Flash Memory in SSD Applications

  • Park, Se-Chun;Kim, You-Sung;Cho, Ho-Youb;Choi, Sung-Dae;Yoon, Mi-Sun;Kim, Tae-Yun;Park, Kun-Woo;Park, Jongsun;Kim, Soo-Won
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.876-879
    • /
    • 2014
  • In current NAND flash design, one of the most challenging issues is reducing peak current consumption (peak ICC), as it leads to peak power drop, which can cause malfunctions in NAND flash memory. This paper presents an efficient approach for reducing the peak ICC of the cache program in NAND flash memory - namely, a program Cache Busy Time (tPCBSY) control method. The proposed tPCBSY control method is based on the interesting observation that the array program current (ICC2) is mainly decided by the bit-line bias condition. In the proposed approach, when peak ICC2 becomes larger than a threshold value, which is determined by a cache loop number, cache data cannot be loaded to the cache buffer (CB). On the other hand, when peak ICC2 is smaller than the threshold level, cache data can be loaded to the CB. As a result, the peak ICC of the cache program is reduced by 32% at the least significant bit page and by 15% at the most significant bit page. In addition, the program throughput reaches 20 MB/s in multiplane cache program operation, without restrictions caused by a drop in peak power due to cache program operations in a solid-state drive.

Approximate-SAD Circuit for Power-efficient H.264 Video Encoding under Maintaining Output Quality and Compression Efficiency

  • Le, Dinh Trang Dang;Nguyen, Thi My Kieu;Chang, Ik Joon;Kim, Jinsang
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.605-614
    • /
    • 2016
  • We develop a novel SAD circuit for power-efficient H.264 encoding, namely a-SAD. Here, some highest-order MSB's are approximated to single MSB. Our theoretical estimations show that our proposed design simultaneously improves performance and power of SAD circuit, achieving good power efficiency. We decide that the optimal number of approximated MSB's is four under 8-bit YUV-420 format, the largest number not to affect video quality and compression-rate in our video experiments. In logic simulations, our a-SAD circuit shows at least 9.3% smaller critical-path delay compared to existing SAD circuits. We compare power dissipation under iso-throughput scenario, where our a-SAD circuit obtains at least 11.6% power saving compared to other designs. We perform same simulations under two- and three-stage pipelined architecture. Here, our a-SAD circuit delivers significant performance (by 13%) and power (by 17% and 15.8% for two and three stages respectively) improvements.

High Capacity Steganographic Method (고용량 스테가노그래픽 방법 연구)

  • Kim, Ki-Jong;Jung, Ki-Hyun;Yoo, Kee-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.155-161
    • /
    • 2009
  • This paper proposes a high capacity data hiding method using modulus function of pixel-value differencing (PVD) and least significant bit (LSB) replacement method. Many novel data hiding methods based on LSB and PVD methods were presented to enlarge hiding capacity and provide an imperceptible quality. A small difference value for two consecutive pixels is belonged to a smooth area and a large difference one is located on an edge area. In our proposed method, the secret data are hidden on the smooth area by the LSB substitution method and PVD method on the edge area. From the experimental results, the proposed method sustains a higher capacity and still a good quality compared with other LSB and modified PVD methods.

  • PDF

A Digital Image Watermarking Scheme using ElGamal Function (ElGarnal함수를 사용하는 디지털 이미지 워터마킹 기법)

  • Lee, Jean-Ho;Kim, Tai-Yun
    • The KIPS Transactions:PartC
    • /
    • v.9C no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Digital image watermarking is a technique for the purpose of protecting the ownership of the image by embedding proprietary watermarks in a digital image. It is required for the digital image watermarking scheme to pursue the robustness against water marking attacks and the perceptual Invisibility more than usual in steganography area, to guarantee not a hidden watermarking algorithm but the publicity of water-marking algorithm details and hidden use of key, which can protect the unauthorized user access from detection. In this paper we propose a new copyright watermarking scheme, which is barred on one-way hash functions using ElGamal functions and modular operations. ElGamal functions are widely used in cryptographic systems. Our watermarking scheme is robust against LSB(least significant bit) attacks and gamma correction attack, and also perceptually invisible. We demonstrate the characteristics of our proposed watermarking scheme through experiments. It is necessary to proceed as the future work the algorithm of achieving at the same time both the pseudo-randomness for the steno-key generation and the asymmetric-key generation.

Design of Low Error Fixed-Width Group CSD Multiplier (저오차 고정길이 그룹 CSD 곱셈기 설계)

  • Kim, Yong-Eun;Cho, Kyung-Ju;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.33-38
    • /
    • 2009
  • The group CSD (GCSD) multiplier was recently proposed based on the variation of canonic signed digit (CSD) encoding and partial product sharing. This multiplier provides an efficient design when the multiplications are performed only with a few predetermined coefficients (e.g., FFT). In many DSP applications such as FFT, the (2W-1)-bit product obtained from W-bit multiplicand and W-bit multiplier is quantized to W-bits by eliminating the (W-1) least-significant bits. This paper presents an error compensation method for a fixed-width GCSD multiplier that receives a W-bit input and produces a W-bit product. To efficiently compensate for the quantization error, the encoded signals from the GCSD multiplier are used for the generation of error compensation bias. By Synopsys simulations, it is shown that the proposed method leads to up to 84% reduction in power consumption and up to 79% reduction in area compared with the fixed-width modified Booth multiplier.

Fragile Watermarking Based on LBP for Blind Tamper Detection in Images

  • Zhang, Heng;Wang, Chengyou;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.385-399
    • /
    • 2017
  • Nowadays, with the development of signal processing technique, the protection to the integrity and authenticity of images has become a topic of great concern. A blind image authentication technology with high tamper detection accuracy for different common attacks is urgently needed. In this paper, an improved fragile watermarking method based on local binary pattern (LBP) is presented for blind tamper location in images. In this method, a binary watermark is generated by LBP operator which is often utilized in face identification and texture analysis. In order to guarantee the safety of the proposed algorithm, Arnold transform and logistic map are used to scramble the authentication watermark. Then, the least significant bits (LSBs) of original pixels are substituted by the encrypted watermark. Since the authentication data is constructed from the image itself, no original image is needed in tamper detection. The LBP map of watermarked image is compared to the extracted authentication data to determine whether it is tampered or not. In comparison with other state-of-the-art schemes, various experiments prove that the proposed algorithm achieves better performance in forgery detection and location for baleful attacks.

Design of an 1.8V 8-bit 500MSPS Low-Power CMOS D/A Converter for UWB System (UWB 시스템을 위한 1.8V 8-bit 500MSPS 저 전력 CMOS D/A 변환기의 설계)

  • Lee, Jun-Hong;Hwang, Sang-Hoon;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.15-22
    • /
    • 2006
  • In this paper, 1.8V 8-bit 500MSPS Low-power CMOS Digital-to-Analog Converter(DAC) for UWB(Ultra Wide Band) Communication Systeme is proposed. The architecture of the DAC is based on a current steering 6+2 full matrix type which has low glitch and high linearity. In order to achieve a high speed and good performance, a current cell with a high output impedance and wide swing output range is designed. Further a thermometer decoder with same delay time and low-power switching decoder for high efficiency performance are proposed. The proposed DAC was implemented with TSMC 0.18um 1-poly 6-metal N-well CMOS technology. The measured SFDR was 49dB when the output frequency was 50MHz at 500MS/s sampling frequency. The measured INL and DNL were 0.9LSB and 0.3LSB respectively. The DAC power dissipation was 20mW and the effective chip area was $0.63mm^2$.

XOR-based High Quality Information Hiding Technique Utilizing Self-Referencing Virtual Parity Bit (자기참조 가상 패리티 비트를 이용한 XOR기반의 고화질 정보은닉 기술)

  • Choi, YongSoo;Kim, HyoungJoong;Lee, DalHo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.156-163
    • /
    • 2012
  • Recently, Information Hiding Technology are becoming increasingly demanding in the field of international security, military and medical image This paper proposes data hiding technique utilizing parity checker for gray level image. many researches have been adopted LSB substitution and XOR operation in the field of steganography for the low complexity, high embedding capacity and high image quality. But, LSB substitution methods are not secure through it's naive mechanism even though it achieves high embedding capacity. Proposed method replaces LSB of each pixel with XOR(between the parity check bit of other 7 MSBs and 1 Secret bit) within one pixel. As a result, stego-image(that is, steganogram) doesn't result in high image degradation. Eavesdropper couldn't easily detect the message embedding. This approach is applying the concept of symmetric-key encryption protocol onto steganography. Furthermore, 1bit of symmetric-key is generated by the self-reference of each pixel. Proposed method provide more 25% embedding rate against existing XOR operation-based methods and show the effect of the reversal rate of LSB about 2% improvement.

A New Ripple Analog-to-Digital Converter (새로운 리플 아날로그-디지털 변환기)

  • 차형우;정원섭
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.8
    • /
    • pp.1255-1259
    • /
    • 1990
  • A new ripple analog-to-digital converter (ADC) has been developed. It consists of two parallel ADCs and a switching network. The circuit operates on the analog input signal in two serial steps. First, a coarse conversion is made to determine the most significant bits by the first parallel ADC. The resultant bits control the switching network to connect a series resistor segment, within which the analog signal is contained, to the second parallel ADC. At second step, a fine conversion is made to determine the least significant bits by the second parallel ADC. The circuit requires 2(2\ulcorner\ulcorner1) comparators, 2(2\ulcorner\ulcorner resistors, and 2(2\ulcorner\ulcorner swithches for N-bit resolution.

  • PDF

Design of a Small Area 12-bit 300MSPS CMOS D/A Converter for Display Systems (디스플레이 시스템을 위한 소면적 12-bit 300MSPS CMOS D/A 변환기의 설계)

  • Shin, Seung-Chul;Moon, Jun-Ho;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, a small area 12-bit 300MSPS CMOS Digital-to-Analog Converter(DAC) is proposed for display systems. The architecture of the DAC is based on a current steering 6+6 segmented type, which reduces non-linearity error and other secondary effects. In order to improve the linearity and glitch noise, an analog current cell using monitoring bias circuit is designed. For the purpose of reducing chip area and power dissipation, furthermore, a noble self-clocked switching logic is proposed. To verify the performance, it is fabricated with $0.13{\mu}m$ thick-gate 1-poly 6-metal N-well Samsung CMOS technology. The effective chip area is $0.26mm^2$ ($510{\mu}m{\times}510{\mu}m$) with 100mW power consumption. The measured INL (Integrated Non Linearity) and DNL (Differential Non Linearity) are within ${\pm}3LSB$ and ${\pm}1LSB$, respectively. The measured SFDR is about 70dB, when the input frequency is 15MHz at 300MHz clock frequency.