Abstract
The group CSD (GCSD) multiplier was recently proposed based on the variation of canonic signed digit (CSD) encoding and partial product sharing. This multiplier provides an efficient design when the multiplications are performed only with a few predetermined coefficients (e.g., FFT). In many DSP applications such as FFT, the (2W-1)-bit product obtained from W-bit multiplicand and W-bit multiplier is quantized to W-bits by eliminating the (W-1) least-significant bits. This paper presents an error compensation method for a fixed-width GCSD multiplier that receives a W-bit input and produces a W-bit product. To efficiently compensate for the quantization error, the encoded signals from the GCSD multiplier are used for the generation of error compensation bias. By Synopsys simulations, it is shown that the proposed method leads to up to 84% reduction in power consumption and up to 79% reduction in area compared with the fixed-width modified Booth multiplier.
그룹 CSD 곱셈기는 프로그래머블 곱셈기에 사용되는 곱셈계수의 종류가 미리 정해져있고, 곱셈계수의 수가 많지 않은 FFT와 같은 응용에 효율적으로 사용하기 위해 최근 제안된 곱셈기이다. FFT를 비롯한 많은 DSP 응용의 VLSI 구현에서는 W비트 입력과 W비트 계수와의 곱셈 시 (2W-1)비트로 늘어나는 곱셈 출력 중 일부 비트만을 취하여 다음 연산에 사용한다. 본 논문에서는 워드길이가 W비트인 입력으로부터 W비트를 출력하는 고정길이 그룹 CSD 곱셈기 설계 방법을 제안한다. 양자화 오차를 효율적으로 보상하기 위해 그룹 CSD 곱셈기의 인코딩 신호를 이용하여 에러보상 바이어스를 생성한다. Synopsys 시뮬레이션을 통해 제안된 고정길이 그룹 CSD 곱셈기는 기존의 고정길이 modified Booth 곱셈기와 비교하여 전력소모에서 최대 84%, 면적에서 최대 79%까지 감소시킬 수 있음을 보인다.