특징 정규화는 인식기를 적용하기 이전의 전처리 단계로 특징 차원에 따라 서로 다른 스케일에 의해 발생하는 오류를 줄이기 위해 널리 사용된다. 하지만 기존 정규화 방법은 클래스 라벨을 고려하지 않으므로 정규화 결과가 인식률에서 최적임을 보장하지 못하는 문제점이 있다. 이를 개선하기 위해 클래스 라벨을 사용하여 정규화를 시행하는 교사 정규화 방법이 제안되었고 기존 정규화 방법에 비해 나은 성능을 보임이 입증되었다. 이 논문에서는 교사 랭크 정규화 방법에 학습 샘플 선택 방법을 적용함으로써 교사 랭크 정규화 방법을 더욱 개선할 수 있는 방법을 제안한다. 학습 샘플 선택은 잡음이 많은 샘플을 학습에서 제외함으로써 잡음에 보다 강한 분류기를 학습시키는 전처리 단계로 많이 사용되며 랭크 정규화에서도 역시 사용될 수 있다. 학습 샘플 선택은 이웃한 샘플이 속하는 클래스와 이웃한 샘플까지의 거리를 바탕으로 하는 두 가지 척도를 제안하였고, 두 가지 척도 모두에서 기존 정규화 방법에 비해 인식률이 향상되었음을 실험 결과를 통해 확인할 수 있었다.
다양한 업무 수행에 있어서 회의나 토론 등의 내용을 정리하여 문서화하는 것의 중요성은 매우 높다. 그러나 기존에는 사람이 직접 내용에 대한 정리를 수작업으로 수행하였다. 본 논문에서는 TextRank 알고리즘을 이용하여 자동으로 회의록을 생성하는 시스템의 개발에 대하여 설명한다. 제안한 시스템은 발언자의 모든 발언 내용을 실시간으로 기록하고, 문장들을 출현 빈도수에 기초하여 유사도를 계산한 후, 문서 데이터 안에서 문장들 간의 관계를 찾아내는 비지도 학습 알고리즘을 통해 중요 단어 혹은 문장을 추출함으로서 자동으로 회의록을 생성하도록 하였다. 특히, PageRank 알고리즘을 단어와 문장에 적합하도록 재구성한 TextRank 알고리즘에 대하여 핵심어의 가중치 조정 기법을 도입함으로서 성능 향상을 모색하였다.
This study was to analyze important dimensions and its factors of micro level of e-learning determining the quality of e-learning. E-learning dimensions and their factors were identified and developed from the analytical review of related researches. From literature review and survey as well as expert interview, six categories of e-learning identified from this study were: 1) curriculum content, 2) usability, 3) instructional design, 4) evaluation -both process and results, 5) management, and 6) refinement and improvement. A total of thirty-seven factors determining the quality of the e-learning six categories were identified. The rank order and contribution rates for each categories and factors were calculated to explain how importantly they contribute to the quality of e-learning. Also three dimensions such as controlling the e-learning quality, e-learning fundamental dimension e-learning process dimension, and e-learning product dimension, were explained. This study suggests a useful guidance for e-learning quality and evaluation framework for better results.
본 연구에서는 게임 초반 10분의 데이터를 이용하여 리그오브레전드 게임의 최종승패를 랭크별로 예측하고, 구축된 승패예측 모형으로부터 변수중요도를 추출하여 승리를 위한 초반 게임운영의 방향성을 알아보았다. 그 결과 모든 랭크에서 70% 이상의 정확도로 승패를 예측할 수 있었다. 이는 경기 양상이 대부분 뒤집히지 않고 최종승패로 이어지는 것을 의미하며, 이러한 경향성은 상위 랭크로 갈수록 더욱 강하게 나타났다. 랭크와 무관하게 킬(데스)가 초반 게임에서 최종승패에 가장 큰 영향을 미치는 요소로 나타났으나, 일부 변수는 랭크에 따라 중요도 순위가 변화하였고 이는 유저가 속한 랭크에 따라 승리에 효과적인 초반 전략방향에 차이가 있음을 시사한다.
본 연구에서는 수능의 수학영역의 출제 유형이나 난이도 등이 고등학교 문과계열 수학 교수 학습과정에 어떠한 영향을 미치는지 알아보기 위하여 최근 5년간(2012~2016학년도) 수능 수학 A형(나형)의 출제유형과 난이도를 살펴보고, 출제유형과 난이도가 고등학교 문과계열 수학 내신 상위권 학생들의 수학 학습 내용에 어떠한 영향을 미치는지에 대해 연구하였다. 그 결과 다음과 같은 결론을 얻었다. 첫째, 고등학교 수학 내신이 상위권인 학생들의 수능등급을 결정하는 오답률 90% 이상인 문항은 지수함수와 로그함수 단원에 편중되어 출제되었다. 둘째, 수능 상위권 학생들은 수능 등급 향상을 위하여 지수함수와 로그함수 단원을 중점적으로 학습해야 할 단원으로 인식하고 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권5호
/
pp.2381-2399
/
2019
Traditional recommendation algorithms on Collaborative Filtering (CF) mainly focus on the rating prediction with explicit ratings, and cannot be applied to the top-N recommendation with implicit feedbacks. To tackle this problem, we propose a new collaborative filtering approach namely Maximize MAP with Matrix Factorization (MFMAP). In addition, in order to solve the problem of non-smoothing loss function in learning to rank (LTR) algorithm based on pairwise, we also propose a smooth MAP measure which can be easily implemented by standard optimization approaches. We perform experiments on three different datasets, and the experimental results show that the performance of MFMAP is significantly better than other recommendation approaches.
본 연구는 문제중심학습이 간호대학생의 비판적 사고성향, 학업적 자기효능감 및 셀프리더십에 미치는 효과를 규명하기 위해 시도되었다. 단일군 사전 -사후 설계로 26명의 간호대학생을 대상으로 진단검사와 간호 교과목에 총 4회기 8시간을 적용하였다. 자료수집은 2019년 8월 29일부터 12월 10까지로 수집된 자료는 SPSS/WIN 23.0을 이용하여 빈도, Kolmogorov-Smirnov, paried t-test, Wilcoxon signed-rank test로 분석하였다. 연구결과 문제중심 학습후 비판적 사고성향(t=-2.16, p=.041)과 학업적 자기효능감(z=-2.36, p=.018)은 유의하게 증가하였으나 셀프리더십(t=-.16, p=.875)은 유의하게 증가하지 않았다. 그러므로 이 연구결과를 바탕으로 다양한 교과목에 문제중심학습을 적용하여 간호대학생이 간호사 핵심역량을 함양하도록 하여야 할 것을 제언한다.
본 연구는 수학교육에서 영향력 있는 논문을 판별하는 기계학습 프로그램 개발 연구이다. 이를 위하여 과학계량학의 관점에서 논문의 영향력을 조명하고, 수학교육 연구 네트워크를 구성하고, 네트워크 중심성 지수인 PageRank로 수학교육 연구의 영향력으로 정의하였다. 영향력 있는 수학교육 연구를 판별하기 위하여 기계학습 모델을 설계하였으며, 이를 이용하여 영향력 있는 논문이 게재된 비율이 높은 학술지를 조사한 결과 Journal for Research in Mathematics Education(25.66%), Educational Studies in Mathematics(22.12%), Zentralblatt für Didaktik der Mathematik(8.46%), Journal of Mathematics Teacher Education(5.8%), Journal of Mathematical Behavior(5.51%) 순으로 나타났다. 수학교육 전문가들이 직접 논문을 읽고 질적으로 평가한 선행연구 결과와 유사한 결과를 기계학습 프로그램으로 도출할 수 있었다. 많은 인원과 시간이 필요했던 수학교육 연구의 영향력 평가를 인공지능을 이용하여 효율적으로 실시할 수 있었다는 점에서 의의가 있다.
TextRank 알고리즘을 활용한 연관 단어 추천 시스템과 사용자가 선택한 단어 기반 아이디어 생성 서비스를 반응형 웹으로 제공한다. 연관 단어 추천 시스템에서는 TextRank 알고리즘을 이용한 단어별 가중치 부여 방법 및 SoftMax를 적용한 확률 출력 방법을 논한다. 아이디어 생성 서비스에서는 mini-GPT를 이용한 아이디어 생성 방법과 인공지능 강화학습 방법에 대해 논한다. 반응형 웹에 대해서는 React와 Spring Boot, Flask 간의 연동 과정에 대해 논하며 전체적인 구동 방식에 대해 서술한다. 사용자가 원하는 주제를 입력하면 연관된 단어를 제공한다. 사용자는 연관된 단어를 선택하거나 원하는 단어를 추가하여 마인드맵을 구성한다. 사용자가 구성된 마인드맵에서 조합할 단어를 선택하면 새로 생성된 아이디어와 그와 연관된 특허를 제공한다. 본 웹서비스는 생성된 아이디어에 대해 다른 사용자와 공유할 수 있으며, 별점으로 사용자 피드백을 받아 인공지능을 개선한다.
본 연구의 목적은 병리학 교과목에 부분 적용한 학습자질문중심학습법이 간호대학생의 학습동기, 의사소통, 문제해결능력에 미치는 효과를 파악하는 것이다. 일개 대학 간호학과 2학년 106명을 대상으로 단일군 사전사후 설계를 적용하여 본 연구를 수행하였다. 수집된 자료는 SPSS 20.0 프로그램을 활용하여 Wilcoxon-signed rank test로 분석하였다. 연구 결과 학기 초에 비하여 학기 말에 의사소통과 문제해결능력이 유의하게 향상되었으며, 학습동기의 하위 항목인 주의력과 만족도도 유의하게 향상된 것을 알 수 있었다. 본 연구 결과는 학습자질문중심학습법이 간호대학생의 의사소통과 문제해결능력 향상에 효과적인 방법이 될 수 있음을 보여주었다. 앞으로 이와 같은 간호대학생의 핵심 역량을 계발하기 위해 다양한 전략이 융합된 교수학습방법의 개발 및 적용이 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.