강화학습은 에이전트가 환경과의 상호작용을 통해 획득한 경험으로부터 제어 규칙을 학습하는 방법이다. 강화학습의 중요한 문제 중의 하나인 신뢰 할당 문제를 해결하기 위해 기여도가 사용되는데, 누적 기여도나 대체 기여도와 같은 기존의 기여도를 이용한 방법은 방문한 상태에서 수행된 행위만을 학습시키기 때문에 학습 자정에서 획득된 보답 신호를 효과적으로 사용하지 못한다. 본 논문에서는 방문한 상태에서 수행된 행위뿐만 아니라 인접 행위들도 학습될 수 있도록 하는 새로운 기여도로써 분포 기여도를 제안한다. 제안된 기여도를 이용한 퍼지 Q-learning 알고리즘을 역진자 시스템에 적용하여 학습 속도면에서 기존의 방법에 비해 우수함을 보인다.
과학 학습 과정에서 유발되는 상태호기심과 상태불안은 학업 수행 및 성취에 많은 영향을 미친다. 상태호기심과 상태불안은 매 순간마다 그 수준이 변할 수 있기 때문에 학습의 전 과정에서 학생의 상태호기심과 상태불안 수준을 파악하여 지도할 필요가 있다. 이러한 맥락에서 본 연구에서는 과학 학습을 과학 문제 대면, 결과 확인, 과학 개념 학습의 세 상황으로 구분하여 초등학교 5~6학년 학생을 대상으로 자신의 예상과 결과의 일치 여부에 따른 학생들의 상태호기심 및 상태불안 수준의 변화를 분석하였다. 분석 결과, 문제 대면 후 결과를 확인하는 과정에서 자신의 예상과 일치한 결과에 직면한 nVOE 집단의 상태호기심 수준은 유의한 차이가 없었지만, 자신의 예상과 일치하지 않은 결과에 직면한 VOE 집단의 상태호기심은 증가하였다. VOE 집단 중 결과에 대한 이유를 바르게 추론한 VOE-R 집단의 상태호기심 수준은 유의한 변화가 없었지만 결과에 대한 이유를 바르게 추론하지 못한 VOE-FR 집단의 상태호기심은 증가하였다. 한편 문제의 결과를 확인한 후 VOE 집단과 nVOE 집단의 상태불안은 감소하였으며 VOE-R 집단 역시 상태불안이 감소하였다. 반면 VOE-FR 집단의 상태불안은 유의한 변화가 나타나지 않았다. 문제의 결과를 확인한 후 결과에 대한 과학 개념을 학습하는 과정에서 VOE 집단, nVOE 집단, VOE-FR 집단의 상태호기심은 모두 감소하였다. 한편 nVOE 집단의 상태불안 수준은 유의한 변화가 없었지만, VOE 집단, VOE-R 집단, VOE-FR 집단의 상태불안 수준은 감소하였다. 이러한 연구 결과의 교육적 함의에 대하여 논의하였다. 본 연구의 결과는 과학 학습에서 유발되는 학생의 정서적 상태에 대한 이해의 폭을 넓힐 수 있을 것으로 기대된다.
In this paper, we present a nonlinear dynamic controller for position tracking of brushless dc motors. In constructing the controller, a backstepping-type approach is used under the condition of full state information, while an adaptive controller is adopted for parameter uncertainty throughout the entire electromechanical system. The nonlinear dynamic controller using the adaptive learning technique approach is shown to drive the state variables of system to the desired ones asymptotically and whose effectiveness is also sown via computer simulation.
Reinforcement Learning (RL) is one of machine learning methods and an RL agent autonomously learns the action selection policy by interactions with its environment. At the beginning of RL research, it was limited to problems in environments assumed to be Markovian Decision Process (MDP). However in practical problems, the agent suffers from the incomplete perception, i.e., the agent observes the state of the environments, but these observations include incomplete information of the state. This problem is formally modeled by Partially Observable MDP (POMDP). One of the possible approaches to POMDPS is to use historical nformation to estimate states. The problem of these approaches is how t..
In this paper, we propose a new type of decentralized learning automata for the control finite state Markov chains with unknown transition probabilities and rewards. In our scheme a .betha.-type learning automaton is associated with each state in which two or more actions(desisions) are available. In this decentralized learning automata system, each learning automaton operates, requiring only local information, to improve its performance under local environment. From simulation results, it is shown that the decentralized learning automata will converge to the optimal policy that produces the most highly total expected reward with discounting in all initiall states.
The recently-developed off-line learning control approaches for the rejection of periodic disturbances utilize the specific property that the learning system tends to oscillate in steady state. Unfortunately, the prior works have not clarified how closely the learning system should approach the steady state to achieve the rejection of periodic disturbances to satisfactory level. In this paper, we address this issue extensively for the class of linear systems. We also attempt to remove the effect of other aperiodic disturbances on the rejection of the periodic disturbances effectively. In fact, the proposed learning control algorithm can provide very fast convergence performance in the presence of aperiodic disturbance. The effectiveness and practicality of our work is demonstrated through mathematical performance analysis as well as various simulation results.
International Journal of Computer Science & Network Security
/
제21권5호
/
pp.69-72
/
2021
The article discusses the features of the use of distance technologies to intensify the learning process of students. The advantages and disadvantages of distance learning are shown. The role and functions of the teacher in distance learning have been adjusted. Information and methodological support for distance learning of students is proposed. Analyzed pedagogical, psychological, methodological and philosophical literature, educational standards, charters of higher educational institutions and other documents. Studied foreign experience in conducting classes using information technology.
Reinforcement learning, which are also studied in the field of defense, face the problem of sample efficiency, which requires a large amount of data to train. Transfer learning has been introduced to address this problem, but its effectiveness is sometimes marginal because the model does not effectively leverage prior knowledge. In this study, we propose a stochastic initial state randomization(SISR) method to enable robust knowledge transfer that promote generalized and sufficient knowledge transfer. We developed a simulation environment involving a cooperative robot transportation task. Experimental results show that successful tasks are achieved when SISR is applied, while tasks fail when SISR is not applied. We also analyzed how the amount of state information collected by the agents changes with the application of SISR.
생체신호인 뇌파를 이용하여 이러닝 학습자의 학습태도를 파악하고 그에 따른 적절한 피드백을 제공하여 학습자의 학습효율을 극대화하려는 연구의 일환으로 여대생을 대상으로 학습자의 학습태도와 뇌파를 분석하여 이들의 상관관계를 밝혀보고자 한다. 학습자가 학습에 집중하는 태도와 그렇지 않은 태도에 대해 뇌파의 파워 스펙트럼을 추출하여 학습자의 뇌파가 어떻게 반응하는지에 중점을 두어 연구하였다. 학습에 집중하는 태도의 대조군으로 산만한 태도와 눈감은 태도를 설정하여 실험을 진행하였다. 학습에 집중하는 태도에서는 집중도가 산만한 태도에 비하여 높게 나타나고 이완지표는 낮게 나타나며, 클릭과 눈굴림과 같은 산만한 태도에서는 주의지표와 잡파 비율이 높게 나왔다. 특히, 눈을 감았을 때는 알파 세타 비율이 1이하로 나타나 눈을 뜬 다른 상태와 뚜렷이 구분되었다.
본 연구의 목적은 과학 학습 상황을 과학 문제 대면, 결과 확인, 과학 개념 학습의 세 단계로 구분하여 학생들의 상태호기심 및 상태불안을 측정할 수 있는 도구를 개발하고, 개발한 측정도구의 타당도와 신뢰도를 검증하는 것이다. 이를 위해 여러 선행연구의 이론적 배경을 바탕으로 과학 상태호기심과 과학 상태불안을 세 단계의 학습 상황에 맞게 정의하였고, 이 정의에 맞게 예비 문항을 개발하였다. 예비 문항은 상태호기심 및 상태불안의 변화도 파악할 수 있도록 단계별로 문항 수와 기본틀이 동일하게 개발하였다. 안면타당도와 내용 타당도 검증과정에서 일부 예비 문항을 수정하였다. 탐색적 및 확인적 요인분석 결과 본 측정도구는 각 단계별로 상태호기심 5 문항과 상태불안 5 문항(2 요인 10 문항)으로 구성되었고, 본 측정도구의 구인타당도를 확보하였다. 크론바흐 알파값은 요인별, 전체문항별 모두 0.8 이상이 나왔다. 본 측정도구는 세 단계의 과학 학습 상황에 맞게 상태호기심 및 상태불안을 측정하고 그 변화를 파악할 수 있다는 점에서 의미있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.