• Title/Summary/Keyword: Learning rule

Search Result 655, Processing Time 0.028 seconds

Driver Assistance System By the Image Based Behavior Pattern Recognition (영상기반 행동패턴 인식에 의한 운전자 보조시스템)

  • Kim, Sangwon;Kim, Jungkyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.123-129
    • /
    • 2014
  • In accordance with the development of various convergence devices, cameras are being used in many types of the systems such as security system, driver assistance device and so on, and a lot of people are exposed to these system. Therefore the system should be able to recognize the human behavior and support some useful functions with the information that is obtained from detected human behavior. In this paper we use a machine learning approach based on 2D image and propose the human behavior pattern recognition methods. The proposed methods can provide valuable information to support some useful function to user based on the recognized human behavior. First proposed one is "phone call behavior" recognition. If a camera of the black box, which is focused on driver in a car, recognize phone call pose, it can give a warning to driver for safe driving. The second one is "looking ahead" recognition for driving safety where we propose the decision rule and method to decide whether the driver is looking ahead or not. This paper also shows usefulness of proposed recognition methods with some experiment results in real time.

An Efficient One Class Classifier Using Gaussian-based Hyper-Rectangle Generation (가우시안 기반 Hyper-Rectangle 생성을 이용한 효율적 단일 분류기)

  • Kim, Do Gyun;Choi, Jin Young;Ko, Jeonghan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.56-64
    • /
    • 2018
  • In recent years, imbalanced data is one of the most important and frequent issue for quality control in industrial field. As an example, defect rate has been drastically reduced thanks to highly developed technology and quality management, so that only few defective data can be obtained from production process. Therefore, quality classification should be performed under the condition that one class (defective dataset) is even smaller than the other class (good dataset). However, traditional multi-class classification methods are not appropriate to deal with such an imbalanced dataset, since they classify data from the difference between one class and the others that can hardly be found in imbalanced datasets. Thus, one-class classification that thoroughly learns patterns of target class is more suitable for imbalanced dataset since it only focuses on data in a target class. So far, several one-class classification methods such as one-class support vector machine, neural network and decision tree there have been suggested. One-class support vector machine and neural network can guarantee good classification rate, and decision tree can provide a set of rules that can be clearly interpreted. However, the classifiers obtained from the former two methods consist of complex mathematical functions and cannot be easily understood by users. In case of decision tree, the criterion for rule generation is ambiguous. Therefore, as an alternative, a new one-class classifier using hyper-rectangles was proposed, which performs precise classification compared to other methods and generates rules clearly understood by users as well. In this paper, we suggest an approach for improving the limitations of those previous one-class classification algorithms. Specifically, the suggested approach produces more improved one-class classifier using hyper-rectangles generated by using Gaussian function. The performance of the suggested algorithm is verified by a numerical experiment, which uses several datasets in UCI machine learning repository.

A Simple Stereo Matching Algorithm using PBIL and its Alternative (PBIL을 이용한 소형 스테레오 정합 및 대안 알고리즘)

  • Han Kyu-Phil
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.429-436
    • /
    • 2005
  • A simple stereo matching algorithm using population-based incremental learning(PBIL) is proposed in this paper to decrease the general problem of genetic algorithms, such as memory consumption and inefficiency of search. PBIL is a variation of genetic algorithms using stochastic search and competitive teaming based on a probability vector. The structure of PBIL is simpler than that of other genetic algorithm families, such as serial and parallel ones, due to the use of a probability vector. The PBIL strategy is simplified and adapted for stereo matching circumstances. Thus, gene pool, chromosome crossover, and gene mutation we removed, while the evolution rule, that fitter chromosomes should have higher survival probabilities, is preserved. As a result, memory space is decreased, matching rules are simplified and computation cost is reduced. In addition, a scheme controlling the distance of neighbors for disparity smoothness is inserted to obtain a wide-area consistency of disparities, like a result of coarse-to-fine matchers. Because of this scheme, the proposed algorithm can produce a stable disparity map with a small fixed-size window. Finally, an alterative version of the proposed algorithm without using probability vector is also presented for simpler set-ups.

Korean Semantic Role Labeling Using Semantic Frames and Synonym Clusters (의미 프레임과 유의어 클러스터를 이용한 한국어 의미역 인식)

  • Lim, Soojong;Lim, Joon-Ho;Lee, Chung-Hee;Kim, Hyun-Ki
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.773-780
    • /
    • 2016
  • Semantic information and features are very important for Semantic Role Labeling(SRL) though many SRL systems based on machine learning mainly adopt lexical and syntactic features. Previous SRL research based on semantic information is very few because using semantic information is very restricted. We proposed the SRL system which adopts semantic information, such as named entity, word sense disambiguation, filtering adjunct role based on sense, synonym cluster, frame extension based on synonym dictionary and joint rule of syntactic-semantic information, and modified verb-specific numbered roles, etc. According to our experimentations, the proposed present method outperforms those of lexical-syntactic based research works by about 3.77 (Korean Propbank) to 8.05 (Exobrain Corpus) F1-scores.

Criticism and alternatives of calculus history described by secondary school mathematics textbooks - Focusing on the history of calculus until the 17th century - (중등수학 교과서가 다루는 미적분 역사 서술의 비판과 대안 - 17세기까지의 미적분의 역사를 중심으로 -)

  • Kim, Sang Hoon;Park, Jeanam
    • Communications of Mathematical Education
    • /
    • v.31 no.2
    • /
    • pp.139-152
    • /
    • 2017
  • In this paper, we examine how secondary school mathematics textbooks on calculus introduce the history of calculus. In order to identify the problem, we consider the Babylonian integration by trapezoidal rule, which was made to calculate the location of Jupiter in 350-50 B.C., and the integration by the method of the rotating plate of ibn al-Haytham in Egypt, about 1000 years. In conclusion, our secondary school mathematics textbooks describe Newton and Leibniz as inventing calculus and place their roots in ancient Greece. The origin of the calculus is in Babylonia and the Faṭimah Dynasty (909-1171) (Egypt) and it is desirable that the calculus is developed in Europe after the development of the power series in India, and that the value of Asia Africa is introduced in the textbooks.

Network Analysis between Uncertainty Words based on Word2Vec and WordNet (Word2Vec과 WordNet 기반 불확실성 단어 간의 네트워크 분석에 관한 연구)

  • Heo, Go Eun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.3
    • /
    • pp.247-271
    • /
    • 2019
  • Uncertainty in scientific knowledge means an uncertain state where propositions are neither true or false at present. The existing studies have analyzed the propositions written in the academic literature, and have conducted the performance evaluation based on the rule based and machine learning based approaches by using the corpus. Although they recognized that the importance of word construction, there are insufficient attempts to expand the word by analyzing the meaning of uncertainty words. On the other hand, studies for analyzing the structure of networks by using bibliometrics and text mining techniques are widely used as methods for understanding intellectual structure and relationship in various disciplines. Therefore, in this study, semantic relations were analyzed by applying Word2Vec to existing uncertainty words. In addition, WordNet, which is an English vocabulary database and thesaurus, was applied to perform a network analysis based on hypernyms, hyponyms, and synonyms relations linked to uncertainty words. The semantic and lexical relationships of uncertainty words were structurally identified. As a result, we identified the possibility of automatically expanding uncertainty words.

A Study on the Convergence Perception of Students in Radiology on the Reorganization of Safety Management System by person with frequent access of Nuclear Safety Act (원자력안전법 수시출입자 안전관리체계 개편에 대한 방사선학과 재학생들의 융합적 인식 연구)

  • Lee, Bo-Woo;Kim, Chang-Gyu
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.89-94
    • /
    • 2019
  • This study will examine the awareness of students in radiology who have applied the reorganization of the safety management system of frequent visitors according to the amendment of the Nuclear Safety Act. A survey was conducted on 175 students from the Department of Radiology at K University. 98.1% of the students in the second grade, 90.3% in the third grade, and 97.7% in the fourth grade were recognized as need to be classified as person with frequent access by the Nuclear Safety Act. Limiting the operation of radiation equipment in radiography practice is a regulation that violates students' right to learn, and it is necessary to enact an exception rule for learning so that the right to study is not violated.

An Analysis of the Scientific Problem Solving Strategies according to Knowledge Levels of the Gifted Students (영재학생들의 지식수준에 따른 과학적 문제해결 전략 분석)

  • Kim, Chunwoong;Chung, Jungin
    • Journal of Korean Elementary Science Education
    • /
    • v.38 no.1
    • /
    • pp.73-86
    • /
    • 2019
  • The purpose of this study is to investigate the characteristics of problem solving strategies that gifted students use in science inquiry problem. The subjects of the study are the notes and presentation materials that the 15 team of elementary and junior high school students have solved the problem. They are a team consisting of 27 elementary gifted and 29 middle gifted children who voluntarily selected topics related to dimple among the various inquiry themes. The analysis data are the observations of the subjects' inquiry process, the notes recorded in the inquiry process, and the results of the presentations. In this process, the knowledge related to dimple is classified into the declarative knowledge level and the process knowledge level, and the strategies used by the gifted students are divided into general strategy and supplementary strategy. The results of this study are as follows. First, as a result of categorizing gifted students into knowledge level, six types of AA, AB, BA, BB, BC, and CB were found among the 9 types of knowledge level. Therefore, gifted students did not have a high declarative knowledge level (AC type) or very low level of procedural knowledge level (CA type). Second, the general strategy that gifted students used to solve the dimple problem was using deductive reasoning, inductive reasoning, finding the rule, solving the problem in reverse, building similar problems, and guessing & reviewing strategies. The supplementary strategies used to solve the dimple problem was finding clues, recording important information, using tables and graphs, making tools, using pictures, and thinking experiment strategies. Third, the higher the knowledge level of gifted students, the more common type of strategies they use. In the case of supplementary strategy, it was not related to each type according to knowledge level. Knowledge-based learning related to problem situations can be helpful in understanding, interpreting, and representing problems. In a new problem situation, more problem solving strategies can be used to solve problems in various ways.

A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT

  • Tandon, Aditya;Kumar, Pramod;Rishiwal, Vinay;Yadav, Mano;Yadav, Preeti
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1317-1341
    • /
    • 2021
  • Nowadays, the Internet of Things (IoT) is adopted to enable effective and smooth communication among different networks. In some specific application, the Wireless Sensor Networks (WSN) are used in IoT to gather peculiar data without the interaction of human. The WSNs are self-organizing in nature, so it mostly prefer multi-hop data forwarding. Thus to achieve better communication, a cross-layer routing strategy is preferred. In the cross-layer routing strategy, the routing processed through three layers such as transport, data link, and physical layer. Even though effective communication achieved via a cross-layer routing strategy, energy is another constraint in WSN assisted IoT. Cluster-based communication is one of the most used strategies for effectively preserving energy in WSN routing. This paper proposes a Bio-inspired cross-layer routing (BiHCLR) protocol to achieve effective and energy preserving routing in WSN assisted IoT. Initially, the deployed sensor nodes are arranged in the form of a grid as per the grid-based routing strategy. Then to enable energy preservation in BiHCLR, the fuzzy logic approach is executed to select the Cluster Head (CH) for every cell of the grid. Then a hybrid bio-inspired algorithm is used to select the routing path. The hybrid algorithm combines moth search and Salp Swarm optimization techniques. The performance of the proposed BiHCLR is evaluated based on the Quality of Service (QoS) analysis in terms of Packet loss, error bit rate, transmission delay, lifetime of network, buffer occupancy and throughput. Then these performances are validated based on comparison with conventional routing strategies like Fuzzy-rule-based Energy Efficient Clustering and Immune-Inspired Routing (FEEC-IIR), Neuro-Fuzzy- Emperor Penguin Optimization (NF-EPO), Fuzzy Reinforcement Learning-based Data Gathering (FRLDG) and Hierarchical Energy Efficient Data gathering (HEED). Ultimately the performance of the proposed BiHCLR outperforms all other conventional techniques.

An Analysis of Existing Studies on Parallel and Distributed Processing of the Rete Algorithm (Rete 알고리즘의 병렬 및 분산 처리에 관한 기존 연구 분석)

  • Kim, Jaehoon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.7
    • /
    • pp.31-45
    • /
    • 2019
  • The core technologies for intelligent services today are deep learning, that is neural networks, and parallel and distributed processing technologies such as GPU parallel computing and big data. However, for intelligent services and knowledge sharing services through globally shared ontologies in the future, there is a technology that is better than the neural networks for representing and reasoning knowledge. It is a knowledge representation of IF-THEN in RIF or SWRL, which is the standard rule language of the Semantic Web, and can be inferred efficiently using the rete algorithm. However, when the number of rules processed by the rete algorithm running on a single computer is 100,000, its performance becomes very poor with several tens of minutes, and there is an obvious limitation. Therefore, in this paper, we analyze the past and current studies on parallel and distributed processing of rete algorithm, and examine what aspects should be considered to implement an efficient rete algorithm.