본 논문에서는 지자체의 요금 체납을 줄이기 위해 특정 지자체를 대상으로 검침원의 면담 등을 통해 지방상수도 통합정보시스템에서 체납에 영향을 미치는 내부 데이터 요소를 찾았다. 또한 국가 통계 데이터 중에서 체납에 영향을 미치는 후보 데이터를 도출하였다. 독립변수가 종속변수에 미치는 영향도는 정보이득이라는 데이터 집합에서 종속변수에 대한 무질서도를 조사하여 표본 데이터를 수집하였다. 그리고 빅 데이터 분석 알고리즘인 의사결정트리와 로지스틱 회귀기법 중 어느 알고리즘이 더 높은 예측율을 나타내는지 n-fold cross-validation 방법을 사용하여 평가하였다. 이를 통해 지자체의 데이터를 기초로 알고리즘의 성능을 비교한 결과 의사결정트리가 로지스틱회귀보다 더 정확한 수용가 납부 패턴을 찾을 수 있음을 확인하였다. 머신러닝을 이용한 분석 알고리즘 모델 개발의 과정에서는 알고리즘의 정확성 향상을 위해 의사결정트리의 복잡성과 정확성에 직접적인 영향을 주는 최소 데이터 개수와 최대 순도라는 두 개의 환경변수의 최적값을 도출하였다.
본 연구의 목적은 교육의 사각지대에 놓여 있는 난독증 고위험군 학생들에게 다층 체계를 기본으로 하는 RTI 교육 서비스 내에서 읽기 유창성 프로그램을 제공하고, 최종적으로 학습 진전도에 따라 난독증 학생을 선별하는 데 있다. 연구대상은 "2016년도 경기도 난독증 우수프로그램 공모사업" 으로 선정된 '경기도 난독증 아동청소년 지원프로그램 대상자' 중 RTI 체계 내에서 읽기 유창성 영역에서 어려움을 보이는 22명의 초등학생 1-5학년 학생들이다. 연구대상에게 증거기반 읽기 교수 학습 전략에 따른 개별화된 읽기 유창성 프로그램을 약 3개월간 8-10회기 제공하고, 총 3회의 진전도 모니터링을 실시하였다. 연구결과 읽기 유창성 중재를 받은 22명의 학생들을 관심군, 향상군, 이중불일치군으로 분류하였으며, 최종적으로 이중불일치군으로 분류된 3명의 학생들을 잠재적 난독증 집단으로 정의 내렸다. 마지막으로 본 연구의 결과에 따라 향후 난독증 학생에 대한 교육적 진단과 효과적인 중재 적용에 대한 방향성 및 시사점을 제안하였다.
DAUD, Salina;WAN HANAFI, Wan Noordiana;SOHAIL, M. Sadiq;WAN ABDULLAH, Wan Mohammad Taufik;AHMAD, Nurul Nadiah
The Journal of Asian Finance, Economics and Business
/
제9권8호
/
pp.19-27
/
2022
Graduate well-being is foundational to academic success, and they are becoming more and more vulnerable. This is as they suffer from mental health challenges like anxiety and depression at rates six times higher than the general population. When the nature of their educational experience changes, such as when they had to stay in their homes during the COVID-19 pandemic, the stress on their mental health increases. The number of cases of emotional wellness among university students is considered a public health problem, but these young people often do not seek appropriate treatment. This study, therefore, aims to identify the influence of health behavior factors on graduate emotional wellness. This study used a questionnaire with a cross-sectional survey design. Questionnaires were distributed online to graduates from selected Private and Public Higher Education Institutions in Malaysia. The Partial Least Square Equation Model (PLS-SEM) was used to analyze the results of the study. Overall findings indicate that the health behavior factors have a significant influence on graduate emotional wellness. The findings from this study will benefit the management, academics, counselors, and other entities, including the Students' Representative Council, in identifying ways to improve services and upgrade the necessary facilities to enhance the graduate's emotional wellness.
Errors in the semiconductor process are generated by a change in the state of the equipment, and errors usually arise when the state of the equipment changes or when parts that make up the equipment have flaws. In this investigation, we anticipated that aging of the mass flow controller in the plasma enhanced chemical vapor deposition SiO2 thin film deposition method caused a minute flow rate shift. In seven cases, fourier transformation infrared film quality analysis of the deposited thin film was used to characterize normal and pathological processes. The plasma condition was monitored using optical emission spectrometry data as the flow rate changed during the procedure. Preprocessing was used to apply the collected OES data to the artificial immune system algorithm, which was then used to process diagnosis. Through comparisons between datasets, the learning algorithm compared classification accuracy and improved the method. It has been confirmed that data characterized as a normal process and abnormal processes with differing flow rates may be discriminated by themselves using the artificial immune system data mining method.
Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
Computers and Concrete
/
제29권 6호
/
pp.375-391
/
2022
This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.
기업 부도의 효율적인 예측은 금융기관의 적절한 대출 결정과 여신 부실률 감소 측면에서 중요한 부분이다. 많은 연구에서 인공지능 기술을 활용한 분류모델 연구를 진행하였다. 금융 산업 특성상 새로운 예측 모델의 성능이 우수하더라도 어떤 근거로 결과를 출력했는지 직관적인 설명이 수반되어야 한다. 최근 미국, EU, 한국 등 에서는 공통적으로 알고리즘의 설명요구권을 제시하고 있어 금융권 AI 활용에 투명성을 확보하여야 한다. 본 논문에서는 외부에 오픈된 기업부도 데이터를 활용하여 인공지능 기반의 해석 가능한 분류 예측 모델을 제안하였다. 먼저 데이터 전처리 작업, 5겹 교차검증 등을 수행하고 로지스틱 회귀, SVM, XGBoost, LightGBM 등 10가지 지도학습 분류모델 최적화를 통해 분류 성능을 비교하였다. 그 결과 LightGBM이 가장 우수한 모델로 확인되었고, 설명 가능한 인공지능 기법인 SHAP을 적용하여 부도예측 과정에 대한 사후 설명을 제공하였다.
본 연구에서는 화강암 시편을 대상으로 파쇄 유체의 점성과 주입 속도를 변화시키며 실내 수압 파쇄 실험을 수행하였고, 3D X-ray CT 촬영을 통해 파쇄 후 시편 내부를 관찰하였다. 이미지 처리에 탁월한 성능을 보이는 합성곱 신경망(Convolutional Neural Network, CNN) 기반 Nested U-Net 모델 구조를 활용하여 CT 이미지 내 수압 파쇄 균열 추출을 수행하였고, 복잡한 형상의 미세균열을 정교하게 추출할 수 있었다. CNN 기반 모델로 추출된 균열을 3차원으로 재구성하여 균열의 부피, 두께, 굴곡도, 균열면 거칠기를 분석하였다. 그 결과 파쇄 유체의 점성이 클수록 균열 부피와 두께가 증가하였고, 굴곡도와 균열면의 거칠기가 감소하는 경향을 보였다. 또한 균열면의 굴곡도와 거칠기 이방성이 존재함을 확인할 수 있었다. 본 연구는, CNN 기반의 균열 추출 모델을 활용해 전통적인 이미지 처리 방법보다 정교한 균열 추출을 수행하고, 이를 기반으로 수압 파쇄 균열의 정량 분석을 성공적으로 수행하였다.
2013년부터 아프리카 12국에 구축해온 솔라스쿨 활용 교육 지원 사업의 교수학습 활용 사례 및 성과를 규명하기 위해 케냐 1개교와 우간다 2개교를 방문하여, 학생들의 컴퓨터 사용 빈도 등 양태, ICT 기반 교수 학습 접근성 향상으로 인한 교사 자질 개선 여부 등을 조사하였다. 각 학교별 선도 교사, 교장, 교감, ICT 지원 인력, 학생들을 대상으로 면담조사를 실시하였다. 연구 결과는 다음과 같다. 첫째, 학생들의 입학률, 전입률, 출석률이 증진되었다. 둘째, 교사역량강화를 위한 현장연수, 초청연수의 효과를 확인하였다. 셋째, 솔라스쿨은 인근 학교 및 지역 사회의 변화를 위해 촉매 역할을 수행하였다. 넷째, 학교 내 모든 교육 관련자 간 솔라스쿨 지원사업의 의의와 주인의식의 공유 필요성과 지속적인 역량 강화를 위한 노력이 후속되어야 한다는 요구를 규명하였다.
본 논문은 AI Hub에서 제공하는 웰니스 대화 스크립트, 주제별 일상 대화 데이터세트와 Github에 공개된 챗봇 데이터세트를 활용하여 사용자의 발화에서 우울 관련 감정을 탐지하는 모델을 제안한다. 우울 관련 감정에는 우울감, 무기력을 비롯한 18가지 감정이 존재하며, 언어 모델에서 높은 성능을 보이는 KoBERT와 KoELECTRA 모델을 사용하여 감정 분류 작업을 수행한다. 모델별 성능 비교를 위해 우리는 데이터세트를 다양하게 구축하고, 좋은 성능을 보이는 모델에 대해 배치 크기와 학습률을 조정하면서 분류 결과를 비교한다. 더 나아가, 사람은 동시에 여러 감정을 느끼는 것을 반영하기 위해, 모델의 출력값이 특정 임계치보다 높은 레이블들을 모두 정답으로 선정함으로써, 다중 분류 작업을 수행한다. 이러한 과정을 통해 도출한 성능이 가장 좋은 모델을 Depression model이라 부르며, 이후 사용자 발화에 대해 우울 관련 감정을 분류할 때 해당 모델을 사용한다.
Caring for patients with cancer is highly stimulating and rewarding, attracting health professionals to the field who enjoy the challenge of managing a complex illness. Health professionals often form close bonds with their patients as they confront ongoing disease or treatment impacts, which may be associated with multiple losses involving function and/or eventual loss of life. Ongoing exposure to patient loss, along with a challenging work setting, may pose significant stress and impact health professionals' well-being. The prevalence rates of burnout and compassion fatigue (CF) are significant, yet health professionals have little knowledge on these topics. A 6-week continuing education program consisting of weekly small-group video-conferencing sessions, case-based learning, and an online community of practice was delivered to health care providers providing oncology care. Program content included personal, organization and team-related risk and protective factors associated with CF, grief models, and strategies to mitigate against CF. Content analysis was completed as part of the program evaluation. In total, 189 participants (93% nurses) completed the program, which was associated with significant improvements in confidence and knowledge of CF and strategies to support self and team resilience. Qualitative themes and vignettes from experiences with the program are presented. Key themes included knowledge gaps, a lack of support related to CF and strategies to support resilience, organization-and team-based factors that can inhibit expression about the impacts of clinical work, the health professional as a "person" in caregiving, and the role of personal variables, self-skill practices, and recommendations for education and support for self and teams.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.