• 제목/요약/키워드: Learning pattern

검색결과 1,296건 처리시간 0.027초

가우시안 혼합모델을 이용한 공항 접근 패턴 추출 및 패턴 별 과이탈 확률 분석 (Extracting Patterns of Airport Approach Using Gaussian Mixture Models and Analyzing the Overshoot Probabilities)

  • 류재영;한성민;이학태
    • 한국항행학회논문지
    • /
    • 제27권6호
    • /
    • pp.888-896
    • /
    • 2023
  • 항공기 착륙 시에는 정해진 절차에 따라 접근이 이루어진 다음, 활주로 중심선과 정렬하여 착륙하게 된다. 하지만 공항의 상황, 주변 항공기의 상황, 또는 관제사의 지시 등에 따라 빈번한 레이더 벡터링이 일어나기 때문에, 교통 흐름을 파악하거나, 비행 안전성을 파악하기 위해서는 항공기의 접근 패턴을 인지할 필요가 있다. 또한 최종 접근 시 활주로 중심선과 정렬하는 과정에서 과이탈이 발생하는 경우가 있는 데, 이는 이후 불안정 접근 등과 같이 보다 위험한 상황을 초래할 수 있다. 본 논문에서는 클러스터링 기법을 이용하여 접근 구간에서의 항공기 궤적들의 패턴을 추출하였다. GMM (Gaussian Mixture Model)을 이용하여 김해공항 접근 항공기 궤적에 대한 클러스터링을 진행하였으며, 2019년 1년간 김해공항으로 착륙한 항공기의 데이터를 이용하였다. 클러스터 별 centroid 값을 이용하여, 총 86개의 접근 궤적 패턴을 추출하였다. 그 후 각 클러스터 내 항공기 중 최종 접근시 과이탈하는 항공기를 탐지하여 확률 분포를 계산하였다.

Deep learning-based anomaly detection in acceleration data of long-span cable-stayed bridges

  • Seungjun Lee;Jaebeom Lee;Minsun Kim;Sangmok Lee;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • 제33권2호
    • /
    • pp.93-103
    • /
    • 2024
  • Despite the rapid development of sensors, structural health monitoring (SHM) still faces challenges in monitoring due to the degradation of devices and harsh environmental loads. These challenges can lead to measurement errors, missing data, or outliers, which can affect the accuracy and reliability of SHM systems. To address this problem, this study proposes a classification method that detects anomaly patterns in sensor data. The proposed classification method involves several steps. First, data scaling is conducted to adjust the scale of the raw data, which may have different magnitudes and ranges. This step ensures that the data is on the same scale, facilitating the comparison of data across different sensors. Next, informative features in the time and frequency domains are extracted and used as input for a deep neural network model. The model can effectively detect the most probable anomaly pattern, allowing for the timely identification of potential issues. To demonstrate the effectiveness of the proposed method, it was applied to actual data obtained from a long-span cable-stayed bridge in China. The results of the study have successfully verified the proposed method's applicability to practical SHM systems for civil infrastructures. The method has the potential to significantly enhance the safety and reliability of civil infrastructures by detecting potential issues and anomalies at an early stage.

일 도시의 초등학교 학생의 수면습관과 행동, 정서, 주의력, 학습과의 관계 (Differences in Sleep Patterns are Related to Behavior, Emotional Problems, Attention and Academic Performance in Elementary School Students of a South Korean Metropolitan City)

  • 탁희종;이지호;이장명;정석훈;이재원;심창선;윤재국;성주현;방수영
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제22권3호
    • /
    • pp.182-191
    • /
    • 2011
  • Objectives: The aim of this study was to investigate the sleep patterns of South Korean elementary school children and whether the differences in sleep patterns were related to behavior, emotional problems, attention and academic performance. Method: This study included a community sample of 268 boys and girls from fourth-, fifth- and sixth-grade classes in a South Korean metropolitan city from November to December 2010. The primary caregivers completed a questionnaire that included information on demographic characteristics, as well as the Child's Sleep Habit Questionnaire (CSHQ), the Korean version of Child Behavior Checklist (K-CBCL), the Korean version of the Learning Disability Evaluation Scale (K-LDES), the Korean version of ADHD Rating Scale (K-ARS) and the Disruptive Behavior Disorder Scale (DBDS). We conducted analyses on the CSHQ individual items, between the subscales, on the total scores and on the K-CBCL, the K-LEDS, the K-ARS and the DBDS. Results: Based on the findings from the CHSQ, the subjects had significantly higher scores for bedtime resistance ($9.18{\pm}2.17$), delayed sleep onset ($1.32{\pm}0.62$), the sleep duration ($4.19{\pm}1.52$) and daytime sleepiness ($14.10{\pm}3.55$) than the scores from the previous reports on children from western countries. The total CHSQ score showed positive correlations to all subscales of the K-CBCL : withdrawn (r=0.24, p<.005), somatic complaint (r=0.24, p<.005) and anxious/depressive (r=0.38, p<.005). Bedtime resistance was associated with oppositional defiant disorder (r=0.15, p<.05) and a positive correlation was demonstrated between sleep anxiety and the oppositional defiant disorder score (r=0.13, p<.05), night waking and the conduct disorder score (r=0.16, p<.05). Delayed sleep onset was related with low performance on the K-LDES with respect to thinking (r=-0.17, p<.05) and mathematical calculation (r=-0.17, p<.05). Conclusion: The results of this study reconfirm Korean children's problematic sleep patterns. Taken together the results provide that the reduced sleep duration and disruption of sleep pattern can have a significant impact on emotion, behavior, performance of learning in children. Further studies concerning more diverse psychosocial factors affecting sleep pattern will be helpful to understanding of the sleep health in Korean children.

불균형 데이터 환경에서 변수가중치를 적용한 사례기반추론 기반의 고객반응 예측 (Response Modeling for the Marketing Promotion with Weighted Case Based Reasoning Under Imbalanced Data Distribution)

  • 김은미;홍태호
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.29-45
    • /
    • 2015
  • 고객반응 예측모형은 마케팅 프로모션을 제공할 목표고객을 효과적으로 선정할 수 있도록 하여 프로모션의 효과를 극대화 할 수 있도록 해준다. 오늘날과 같은 빅데이터 환경에서는 데이터 마이닝 기법을 적용하여 고객반응 예측모형을 구축하고 있으며 본 연구에서는 사례기반추론 기반의 고객반응 예측모형을 제시하였다. 일반적으로 사례기반추론 기반의 예측모형은 타 인공지능기법에 비해 성과가 낮다고 알려져 있으나 입력변수의 중요도에 따라 가중치를 상이하게 적용함으로써 예측성과를 향상시킬 수 있다. 본 연구에서는 프로모션에 대한 고객의 반응여부에 영향을 미치는 중요도에 따라 입력변수의 가중치를 산출하여 적용하였으며 동일한 가중치를 적용한 예측모형과의 성과를 비교하였다. 목욕세제 판매데이터를 사용하여 고객반응 예측모형을 개발하고 로짓모형의 계수를 적용하여 입력변수의 중요도에 따라 가중치를 산출하였다. 실증분석 결과 각 변수의 중요도에 기반하여 가중치를 적용한 예측모형이 동일한 가중치를 적용한 예측모형보다 높은 예측성과를 보여주었다. 또한 고객 반응예측 모형과 같이 실생활의 분류문제에서는 두 범주에 속하는 데이터의 수가 현격한 차이를 보이는 불균형 데이터가 대부분이다. 이러한 데이터의 불균형 문제는 기계학습 알고리즘의 성능을 저하시키는 요인으로 작용하며 본 연구에서 제안한 Weighted CBR이 불균형 환경에서도 안정적으로 적용할 수 있는지 검증하였다. 전체데이터에서 100개의 데이터를 무작위로 추출한 불균형 환경에서 100번 반복하여 예측성과를 비교해 본 결과 본 연구에서 제안한 Weighted CBR은 불균형 환경에서도 일관된 우수한 성과를 보여주었다.

댐 방류 의사결정지원을 위한 딥러닝 기법의 적용성 평가 (Application of deep learning method for decision making support of dam release operation)

  • 정성호;레수안히엔;김연수;최현구;이기하
    • 한국수자원학회논문집
    • /
    • 제54권spc1호
    • /
    • pp.1095-1105
    • /
    • 2021
  • 기후변화에 따른 집중호우, 태풍 등의 발생빈도의 증가로 인하여 댐 운영의 고도화가 요구되고 있다. 일반적으로 댐 운영의 경우 강우예측, 강우-유출, 홍수추적 등 다양한 수리수문학적 요소들을 반영하여 수행되나 기 계획된 특정 규칙에 기반한 댐 운영 모형의 경우, 때때로 개별 모듈들의 불확실성과 복합적인 인자들로 인하여 댐의 방류량을 능동적으로 제어하는데 제약이 있을 수 있다. 본 연구는 남강댐 직하류 홍수피해 예방을 위하여 댐의 방류량 결정 등 효율적인 댐 운영을 지원하기 위해 딥러닝 기반 LSTM (Long Short-Term Memory) 모형을 구축하고, 선행시간별 댐직하류 수위예측 정확도를 분석하는 것을 목적으로 한다. LSTM 모형의 입력자료는 댐 운영에 사용되는 기초자료 및 하류 장대동 수위관측소의 수위 자료를 시 단위로 2009년부터 2021년 7월까지 수집하였다. 2009년부터 2018년 자료는 모형의 학습과 검증 및 2019년부터 2021년 7월 자료는 선행시간을 7개(1 h, 3 h, 6 h, 9 h, 12 h, 18 h, 24 h)로 구분하여 관측 수위와 예측 수위를 비교·분석하였다. 그 결과, 선행시간 1시간의 예측결과는 평균적으로 MAE가 0.01 m, RMSE가 0.015 m, NSE가 0.99 로 관측 수위에 매우 근접한 예측 결과를 나타내었다. 또한, 선행시간이 길어질수록 예측 정확도는 근소하게 감소하였지만, 관측 수위의 시간적 패턴을 유사하게 안정적으로 예측하는 것으로 분석되었다. 따라서 수리수문학적 비선형의 복잡한 자료간의 특징을 자동으로 추출하여 예측 자료를 생산하는 LSTM 모형은 댐 방류량 의사결정에 있어 활용이 가능할 것으로 판단된다.

다종 위성자료와 기계학습을 이용한 고해상도 표층 염분 추정 (Estimation of High Resolution Sea Surface Salinity Using Multi Satellite Data and Machine Learning)

  • 성태준;심성문;장은나;임정호
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.747-763
    • /
    • 2022
  • 해양 염분은 전 지구 규모에서 해수 순환에 영향을 미칠 뿐만 아니라, 연·근해 지역 저염분수가 어족자원 및 수산업에 피해를 줄 수 있는 등 해양 식생환경의 변화를 줄 수 있다. 해수의 표면 특성인 sea surface salinity (SSS)에 따라 마이크로웨이브 영역의 방사율이 달라지며, 이를 통해 Soil Moisture Active Passive (SMAP) 등 위성 센서를 활용한 SSS 산출물이 제공되고 있다. 하지만 마이크로파 위성 센서 기반의 SSS 산출물은 낮은 시공간해상도로 자료를 생산하며, 연안지역과 고위도 지역에서 정확도가 낮다. 이러한 이유로 연·근해 지역 SSS의 상세한 시공간적 변화를 관측하기에는 적합하지 않다. 본 연구에서는 Jang et al. (2022)에서 제시한 기계학습 기반의 개선된 SMAP SSS (SMAP SSS (Jang))를 참조자료로 활용하여, 정지궤도해색센서(Geostationary Ocean Color Imager, GOCI) 영상으로부터 고해상도 SSS를 추정하는 Light Gradient Boosting Machine (LGBM) 기반의 모델을 개발하였다. 3가지 입력변수 조합을 테스트하였고, Multi-scale Ultra-high Resolution Sea Surface Temperature (SST) 자료가 추가된 scheme 3가 가장 높은 정확도를 보였다(R2 = 0.60, RMSE = 0.91 psu). 이를 바탕으로 본 연구영역에서 SST가 SSS 모의에 효과적인 환경변수로 작용함을 보였다. 본 연구에서 제시한 LGBM 기반의 GOCI SSS는 SMAP SSS (Jang)와 비슷한 시공간적 패턴을 보였지만, 더 높은 공간해상도를 바탕으로 SSS의 보다 상세한 공간적 분포와 더불어 SMAP SSS (Jang)에서 산출하지 않는 연안 지역의 정보까지 모의하였다. 또한, 중국 남방지역에 대홍수가 발생하였던 2020년 8월을 대상으로 양자강 유출수(Changjiang Diluted Water)의 거동을 분석한 결과, GOCI SSS는 한국 해양수산연구원의 보도자료와 비교하여 일관성 있는 시공간적 변화를 보였다. 본 연구의 결과로 연안 지역의 저염수 뿐 아니라, 원해 지역에서 광학위성 신호를 활용한 고해상도 SSS 산출의 가능성을 제시하였다.

쇼핑 웹사이트 탐색 유형과 방문 패턴 분석 (Analysis of shopping website visit types and shopping pattern)

  • 최경빈;남기환
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.85-107
    • /
    • 2019
  • 온라인 소비자는 쇼핑 웹사이트에서 특정 제품군이나 브랜드에 속한 제품들을 둘러보고 구매를 진행할 수 있고, 혹은 단순히 넓은 범위의 탐색 반경을 보이며 여러 페이지들을 돌아보다 구매를 진행하지 않고 이탈할 수 있다. 이러한 온라인 소비자의 행동과 구매에 관련된 연구는 꾸준히 진행되어왔으며, 실무에서도 소비자들의 행동 데이터를 바탕으로 한 서비스 및 어플리케이션이 개발되고 있다. 최근에는 빅데이터 기술의 발달로 소비자 개인 단위의 맞춤화 전략 및 추천 시스템이 활용되고 있으며 사용자의 쇼핑 경험을 최적화하기 위한 시도가 진행되고 있다. 하지만 이와 같은 시도에도 온라인 소비자가 실제로 웹사이트를 방문해 제품 구매 단계까지 전환될 확률은 매우 낮은 실정이다. 이는 온라인 소비자들이 단지 제품 구매를 위해 웹사이트를 방문하는 것이 아니라 그들의 쇼핑 동기 및 목적에 따라 웹사이트를 다르게 활용하고 탐색하기 때문이다. 따라서 단지 구매가 진행되는 방문 외에도 다양한 방문 형태를 분석하는 것은 온라인 소비자들의 행동을 이해하는데 중요하다고 할 수 있다. 이러한 관점에서 본 연구에서는 온라인 소비자의 탐색 행동의 다양성과 복잡성을 설명하기 위해 실제 E-commerce 기업의 클릭스트림 데이터를 기반으로 세션 단위의 클러스터링 분석을 진행해 탐색 행동을 유형화하였다. 이를 통해 각 유형별로 상세 단위의 탐색 행동과 구매 여부가 차이가 있음을 확인하였다. 또한 소비자 개인이 여러 방문에 걸친 일련의 탐색 유형에 대한 패턴을 분석하기 위해 순차 패턴 마이닝 기법을 활용하였으며, 같은 기간 내에 제품 구매까지 완료한 소비자와 구매를 진행하지 않은 채 방문만 진행한 소비자들의 탐색패턴에 대한 차이를 확인할 수 있었다. 본 연구의 시사점은 대규모의 클릭스트림 데이터를 활용해 온라인 소비자의 탐색 유형을 분석하고 이에 대한 패턴을 분석해 구매 과정 상의 행동을 데이터 기반으로 설명하였다는 점에 있다. 또한 온라인 소매 기업은 다양한 형태의 탐색 유형에 맞는 마케팅 전략 및 추천을 통해 구매 전환 개선을 시도할 수 있으며, 소비자의 탐색 패턴의 변화를 통해 전략의 효과를 평가할 수 있을 것이다.

MORPHEUS: 확장성이 있는 비교 쇼핑 에이전트 (MORPHEUS: A More Scalable Comparison-Shopping Agent)

  • 양재영;김태형;최중민
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권2호
    • /
    • pp.179-191
    • /
    • 2001
  • 비교 쇼핑은 웹 상에 존재하는 웹 상점으로부터 구매를 원하는 상품에 대해 저렴한 가격을 찾아주는 일종의 판매자 중개 방법이다. 보다 쉽게 확장 가능한 비교 쇼핑 시스템을 생성하기 위해서 에이전트는 각각의 준 구조화된 상점으로부터 필요한 정보만을 추출할 수 있는 wrapper를 자동으로 생성해낼 수 있어야 한다. 웹 문서를 작성하기 위한 HTML은 포함하고 잇는 정보의 의미가 아닌 브라우저를 통한 정보의 표현에 대해서만 정의하고 있다. 또한 각 웹 상점들은 사용자의 다양한 상품 검색 요구를 수용하기 위해 다양한 상품 검색 방법과 검색 결과의 출력 형태를 가진다. 따라서 자동으로 필요한 정보만을 추출하는 wrapper의 생성은 어려운 작업이다. wrapper의 귀납적인 생성은 이러한 이질적인 환경을 극복하기 위한 기술이다. 그러나 Shopbot과 같은 기존의 확장 가능한 비교 쇼핑 에에전트는 원하는 상품 정도를 추출하기 위해 강한 바이어스에 의존한다. 따라서 Shopbot은 바이어스를 따르지 않는 많은 웹 상점으로부터 wrapper를 생성할 수 없다. 본 논문에서는 강한 바이어스를 사용하지 않고 wrapper를 생성해 낼 수 있는 비교 쇼핑 에이전트 시스템인 모피우스를 제안한다. 모피우스는 간단하면서도 견고한 학습 알고리즘을 바탕으로 wrapper를 생성한다. 제안하는 학습 알고리즘의 핵심은 상품 검색 결과를 논리적 라인으로 나누고 여기서 나타나는 상품 설명 단위의 패턴으로 wrapper를 생성하는 것이다. 모피우스 대부분의 웹 상점에 대한 wrapper를 정확하게 생성해 낸다. 또한 학습하려는 검색 결과에 노이즈가 존재하는 경우에도 wrapper를 정확하게 추출할 수 있다. 모피우스는 헤더나 광고와 같은 불필요한 정보들을 제거하는 별도의 단계를 거치지 않으므로 wrapper를 빠르게 생성한다. 궁극적으로 모피우스는 새로운 웹 상점을 사용자가 자유롭게 추가, 삭제할 수 있는 환경을 제공한다.

  • PDF

부산지역 중·고등학생의 김치 섭취 실태 및 기능성 김치 개발에 관한 태도 조사 (Survey on Kimchi Intake Patterns and Attitudes towards Development of Functional Kimchi among Middle and High School Students in Busan Area)

  • 이가영;박의성;박건영
    • 한국식품영양과학회지
    • /
    • 제44권8호
    • /
    • pp.1226-1233
    • /
    • 2015
  • 본 연구는 부산지역 중 고등학교 남녀 학생 833명을 대상으로 김치 섭취 실태 및 기능성 김치 개발에 대한 태도를 설문 조사 하였다. 조사대상자는 중학생이 65.2%, 고등학생이 34.8%, 남학생이 51.3%, 여학생이 48.7%였다. 김치의 가장 선호하는 맛으로는 '매운맛', 가장 선호하지 않는 맛으로는 '신맛'이라고 하였다. 주로 김치를 섭취하는 장소로는 집이 64.3%, 학교가 33.7%였다. 배추김치의 숙성 정도로는 '잘 익은 김치', 김치 섭취량은 '하루 두 번 섭취', 한 끼에 섭취하는 김치의 양은 '3~4조각'이 가장 높게 나타났다. 김치를 섭취하는 이유는 '맛이 있어서'가 가장 높았고, '습관적으로', '건강에 좋아서' 순으로 높게 나타났으며, 섭취하지 않는 이유로 '입맛에 맞지 않아서'라고 하였다. 학교급식용 김치에 대해 전체 응답자 중 65.1%가 '학생들의 입맛을 고려한 김치 개발'을 요구하였고, 향후 개발 김치에 대한 섭취 의향으로 맛이 개선된 김치를 제공하면 김치 섭취량이 '증가할 것이다'라는 응답이 80.6%, 기능성이 개선된 김치를 제공하면 김치 섭취량이 '증가할 것이다'라는 응답이 65.2%로 나타났다. 또한 김치에 첨가하고 싶은 과일 부재료로 배(41.3%), 사과(24.6%), 파인애플(10.3%)로 나타났고, 학생들이 원하는 기능성 증진의 종류로는 '성장 발달'이 59.5%, '체중 감량'이 40.4%, '학습능력 개선'이 32.8%, '질병 예방'이 15.5%였다. 이상에서 청소년의 기호와 요구에 맞는 김치 개발을 통해 청소년의 김치 섭취와 기능성 김치에 대한 관심이 점차적으로 증가될 것으로 기대된다.

월경통 한의표준임상진료지침 개발을 위한 한의사의 인식과 원발성 월경통 치료에 관한 실태조사 (A Survey on Korean Medicine Doctors' Recognition and Clinical Fields of Treating Primary Dysmenorrhea for Developing Korean Medicine Clinical Practice Guideline for Dysmenorrhea)

  • 우혜린;지해리;박경선;황덕상;이창훈;장준복;이진무
    • 대한한방부인과학회지
    • /
    • 제30권2호
    • /
    • pp.93-106
    • /
    • 2017
  • Objectives: This study is aimed to figure out Korean medicine doctors' recognition of Korean Medicine clinical practice guidelines (CPG) and clinical fields of treating primary dysmenorrhea before developing CPG for dysmenorrhea. Methods: We conducted a questionnaire survey targeting 515 Korean medicine doctors belonging to the Association of Korean Medicine by e-mail and analyzed the answers. Results: 81.2% of the respondents knew the concepts and contents of CPG, and 98.7% agreed about the necessity of CPG. 94.2% were willing to use CPG for dysmenorrhea in learning and treating. Average number of patients visiting the respondents' clinics for dysmenorrhea was 3.9, the main age group was 20s (63.1%), and the treatments the patients given before were mostly Western treatments such as pain killers and hormonal drugs. The respondents answered that they diagnosed patients with dysmenorrhea mainly with pattern diagnosis (41.6%), and treated them with herbal medicine (39.2%), acupuncture (31.6%) and moxibustion (22.6%) for 2-3 months. They answered that the acupoint they use most was San yin jiao, and the prescription was Gui-zhi-fu-ling-wan, They answered that the field considered to need further study was decoction of herbal medicine most (27.4%), and the field considered to need insurance coverage was also decoction of herbal medicine most (40.2%). Conclusions: We figured out Korean Medicine doctors' recognition of CPG, clinical diagnosis, treatment, cost for treating dysmenorrhea, and fields of clinical research and policy they required.