Journal of Information Science Theory and Practice
/
제10권3호
/
pp.24-39
/
2022
Online learning is becoming ubiquitous worldwide because of its accessibility anytime and from anywhere. However, it cannot be successfully implemented without understanding constructs that may affect its adoption. Unlike previous literature, this research extends the Unified Theory of Acceptance and Use of Technology with three well-known theories, namely compatibility, online self-efficacy, and knowledge sharing and acquisition to examine online learning adoption. A total of 264 higher education students took part in this research. Partial Least Squares-Structural Equation Modeling was used to evaluate the proposed theoretical model. The findings suggested that performance expectancy and compatibility were significant predictors of behavioral intention, whereas behavioral intention, facilitating conditions, and compatibility had a significant and direct effect on online learning's actual use. The results also showed that knowledge acquisition, knowledge sharing, and online self-efficacy were determinates of performance expectancy. Finally, online self-efficacy was a predictor of effort expectancy. The proposed model achieved a high fit and explained 47.7%, 75.1%, 76.1%, and 71.8% of the variance of effort expectancy, performance expectancy, behavioral intention, and online learning actual use, respectively. This study has many theoretical and practical implications that have been discussed for further research.
Purpose This study employed the Technology Acceptance Model (TAM) to understand students' acceptance of online learning systems. Specifically, this study investigated the factors influencing the behavioral intention of South Korean major university students to use online learning systems for educational purposes in the period when their university life had largely returned to the state it was in before the COVID-19 pandemic. Design/methodology/approach This study examined the impact of four external factors: self-efficacy, personal innovativeness, perceived enjoyment, and system quality, on two TAM constructs: perceived ease of use and perceived usefulness. Additionally, this study explored how perceived ease of use and perceived usefulness affect the behavioral intention to use online learning systems. We conducted an online-based survey using a structured questionnaire. The data collected from the survey were then subjected to Structural Equation Modeling (SEM) analysis to test the study's hypotheses and examine the relationships among the various constructs. Findings The findings reveal that perceived usefulness and ease of use significantly influence students' behavioral intentions to use online learning systems. Furthermore, factors of self-efficacy, perceived enjoyment, and system quality positively affect perceived usefulness and ease of use. Notably, personal innovativeness impacts ease of use but not perceived usefulness.
학생들은 변수가 등호의 좌변에 있는 일차방정식보다 우변에 있는 일차방정식 문제를 해결하는데 어려움을 겪고 있다. 이러한 어려움을 학생들이 극복할 수 있도록, 기본적인 여러 유형의 일차방정식 문제를 경험할 수 있는 기회를 제공하여야 할 것이다. 그리고 일차방정식의 교수 학습에서 여러 유형의 평가 문항을 구성하여 테스트 한 후에 학생들의 풀이 과정을 면밀히 검토하거나, 개별 면담을 통하여 학생들의 학습상황을 파악하고 이를 토대로 피드백을 통한 오류 교정이 이루어져야 할 필요성이 있다.
Limited studies are available on the mathematical estimates of the compressive strength (CS) of glass fiber-embedded polymer (glass-FRP) compressive elements. The present study has endeavored to estimate the CS of glass-FRP normal strength concrete (NSTC) compression elements (glass-FRP-NSTC) employing two various methodologies; mathematical modeling and artificial neural networks (ANNs). The dataset of 288 glass-FRP-NSTC compression elements was constructed from the various testing investigations available in the literature. Diverse equations for CS of glass-FRP-NSTC compression elements suggested in the previous research studies were evaluated employing the constructed dataset to examine their correctness. A new mathematical equation for the CS of glass-FRP-NSTC compression elements was put forwarded employing the procedures of curve-fitting and general regression in MATLAB. The newly suggested ANN equation was calibrated for various hidden layers and neurons to secure the optimized estimates. The suggested equations reported a good correlation among themselves and presented precise estimates compared with the estimates of the equations available in the literature with R2= 0.769, and R2 =0.9702 for the mathematical and ANN equations, respectively. The statistical comparison of diverse factors for the estimates of the projected equations also authenticated their high correctness for apprehending the CS of glass-FRP-NSTC compression elements. A broad parametric examination employing the projected ANN equation was also performed to examine the effect of diverse factors of the glass-FRP-NSTC compression elements.
As many universities introduce e-Learning classes as formal courses, numerous research topics relating to c-Learning such as, defining e-Learning, identifying factors affecting successful e-Learning deployment and examining relationships between the factors in e-Learning classes need to be focused on. However, most researches thai have been undertaken only consider the positive side or right functional dimension. This can result in e-Learning dissemination at universities being overlooked. In accordance with this indispensability, the negative factors, which are potentially inherent in e-Learning learner's perception and affect personnel e-Learning acceptance in university classes need 10 be acknowledged. The purpose of this study was to identify the negative factors affecting personnel e-Learning acceptance and to analyze the interrelation among the factors in this research model. The two independent variables avoidable convenience and reliant convenience, based on pilot test results, and self-efficacy and perceived playfulness, based on the relevant literature, are used to examine the research model. The research problem was tested with data collected from 446 respondents in 12 universities. This study developed and empirically analyzed a model representing the relationship by using the Structural Equation Model. The major findings of this study are, firstly, that the higher reliant convenience is negatively affecting the degree of system use and learner satisfaction, whereas avoidable convenience is only affecting the learner satisfaction. Secondly, the higher self-efficacy and stronger perceived playfulness affects the degree of system use as well as learner satisfaction. Finally, the degree of system use affects the learner satisfaction.
E-Learning is another way of teaching and learning. E-learning is a networked phenomenon allowing for instant revisions and distribution, and goes beyond training and instruction to the delivery of information and tools to improve performance. The benefits of e-learning are many, including cost-effectiveness, enhanced responsiveness to change, consistency, timely content, flexible accessibility, and providing customer value. The proponents of e-learning stress the importance of using communities of interest to support and enhance the learning process. They also emphasizes that people learn more effectively when they interact and are involved with other people participating in similar endeavors. Although the role of e-learning in higher education has significantly increased, the resistance to new technology by professors and lecturers in university and colleges worldwide remains high. The purpose of this study is to identify the determinants of attitude and planned behavior toward e-learning class in universities. A survey methodology was used to investigate a proposed model of influence, and structural equation modeling was used to analyze the results. The hypothesized model was largely supported by this analysis, and the overall results indicate that attitude toward e-learning systems is mostly influenced by the perceived ease of use as well as the level of perceived usefulness, where both factors are influenced by years of experiences in using cyber system and the technical support level. As in other TAM related research, it can be concluded that the perceived ease of use and perceived usefulness contribute to the future use of e-learning system.
본 논문에서는 임베디드 시스템에서의 양자화 기계학습을 수행할 경우 발생하는 양자화 오차를 효과적으로 보상하기 위한 방법론을 제안한다. 경사 도함수(Gradient)를 사용하는 기계학습이나 비선형 신호처리 알고리즘에서 양자화 오차는 경사 도함수의 조기 소산(Early Vanishing Gradient)을 야기하여 전체적인 알고리즘의 성능 하락을 가져온다. 이를 보상하기 위하여 경사 도함수의 최대 성분에 대하여 직교하는 방향의 보상 탐색 벡터를 유도하여 양자화 오차로 인한 성능 하락을 보상하도록 한다. 또한, 기존의 고정 학습률 대신, 내부 순환(Inner Loop) 없는 비선형 최적화 알고리즘에 기반한 적응형 학습률 결정 알고리즘을 제안한다. 실험 결과 제안한 방식의 알고리즘을 로젠블록 함수를 통한 비선형 최적화 문제에 적용할 시 양자화 오차로 인한 성능 하락을 최소화시킬 수 있음을 확인하였다.
본 연구에서는 교수의 핵심역량과 대학생의 인지역량 및 생애역량의 구조적 분석을 위해 전국 7개 대학의 대학생 500명을 대상으로 빈도분석, 기술통계분석, 신뢰도 분석, 상관분석과 확인적 요인분석, 구조방정식모형 분석을 실시하였다. 연구결과, 교수의 핵심역량은 대학생의 생애역량에 유의한 영향을 미치는 것을 알 수 있었으며, 교수의 핵심역량은 대학생의 인지역량에 유의한 영향을 미치는 것을 알 수 있었다. 또한 대학생의 인지역량은 생애역량에 유의한 영향을 미치는 것을 알 수 있었으며, 대학생의 인지역량은 교수의 핵심역량과 대학생의 생애역량 사이에서 유의한 매개효과가 있음을 확인할 수 있었다. 이는 교수의 핵심역량이 대학생의 인지역량을 기반으로 생애역량에 더 많은 영향을 준다고 할 수 있다.
This paper describes a lateral guidance system of an autonomous vehicle, using a neural network model of magneto-resistive sensor and magnetic fields. The model equation was compared with experimental sensing data. We found that the experimental result has a negligible difference from the modeling equation result. We verified that the modeling equation can be used in simulations. As the neural network controller acquires magnetic field values(B$\_$x/, B$\_$y/, B$\_$z/) from the three-axis, the controller outputs a steering angle. The controller uses the back-propagation algorithms of neural network. The learning pattern acquisition was obtained using computer simulation, which is more exact than human driving. The simulation program was developed in order to verify the acquisition of the teaming pattern, teaming itself, and the adequacy of the design controller. The performance of the controller can be verified through simulation. The real autonomous electric vehicle using neural network controller verified good results.
Poisson-Boltzmann은 세포안의 전하의 영향을 기술하는 방정식이며, 생물 등의 분야에서 중요한 역할을 한다. 본 발표에서는 ResNet을 기반으로 한 PBE의 솔루션 예측 방법을 소개 한다. 먼저 FEM을 기반으로 한 방법으로 sample들을 생성한다. 그리고, 세포의 모양과 전하의 위치를 input으로 하고, 전위를 output으로 하는 network를 훈련시킨다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.