• Title/Summary/Keyword: Learning data set

Search Result 1,114, Processing Time 0.034 seconds

User Assistant Soft Computing Method for 3D Effect Optimization (입체효과 최적화를 위한 사용자 보조 소프트컴퓨팅 기법)

  • Choi Woo-Kyung;Kim Seong-Joo;Jeon Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.69-74
    • /
    • 2005
  • In this paper, we suggested user assistant soft computing method for 3D effect optimization. In order to maximize 3D effect of image, intervals among cameras have to be set up properly according to distance between cameras and an object. Two data such as interval and distance was obtained to use in neural network as the data for learning. However, if the data for learning was obtained by only human's subjective views, it could be that the obtained data was not optimal for learning because the data had an accidental ewer To obtain optimal data lot learning, we added candidature data to obtained data through data analysis, and then selected the most proper data between the candidature data and the obtained data for learning in neural network. Usually, 3D effect of image was affected by both distance from an object to cameras and an object size. Therefore, we suggested fuzzy inference model which was able to represent two factors like distance and size. Candidature data was added by fuzzy model. In the simulation result, we verified that the mote the obtained data was affected by human's subjective views, the more effective the suggested system was.

The extension of the largest generalized-eigenvalue based distance metric Dij1) in arbitrary feature spaces to classify composite data points

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • v.17 no.4
    • /
    • pp.39.1-39.20
    • /
    • 2019
  • Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij1) in any linear and non-linear feature spaces. We prove that Dij1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.

Strawberry Pests and Diseases Detection Technique Optimized for Symptoms Using Deep Learning Algorithm (딥러닝을 이용한 병징에 최적화된 딸기 병충해 검출 기법)

  • Choi, Young-Woo;Kim, Na-eun;Paudel, Bhola;Kim, Hyeon-tae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.255-260
    • /
    • 2022
  • This study aimed to develop a service model that uses a deep learning algorithm for detecting diseases and pests in strawberries through image data. In addition, the pest detection performance of deep learning models was further improved by proposing segmented image data sets specialized in disease and pest symptoms. The CNN-based YOLO deep learning model was selected to enhance the existing R-CNN-based model's slow learning speed and inference speed. A general image data set and a proposed segmented image dataset was prepared to train the pest and disease detection model. When the deep learning model was trained with the general training data set, the pest detection rate was 81.35%, and the pest detection reliability was 73.35%. On the other hand, when the deep learning model was trained with the segmented image dataset, the pest detection rate increased to 91.93%, and detection reliability was increased to 83.41%. This study concludes with the possibility of improving the performance of the deep learning model by using a segmented image dataset instead of a general image dataset.

A Study on the Construction of Stable Clustering by Minimizing the Order Bias (순서 바이어스 최소화에 의한 안정적 클러스터링 구축에 관한 연구)

  • Lee, Gye-Seong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1571-1580
    • /
    • 1999
  • When a hierarchical structure is derived from data set for data mining and machine learning, using a conceptual clustering algorithm, one of the unsupervised learning paradigms, it is not unusual to have a different set of outcomes with respect to the order of processing data objects. To overcome this problem, the first classification process is proceeded to construct an initial partition. The partition is expected to imply the possible range in the number of final classes. We apply center sorting to the data objects in the classes of the partition for new data ordering and build a new partition using ITERATE clustering procedure. We developed an algorithm, REIT that leads to the final partition with stable and best partition score. A number of experiments were performed to show the minimization of order bias effects using the algorithm.

  • PDF

A Study on Sound Recognition System Based on 2-D Transformation and CNN Deep Learning (2차원 변환과 CNN 딥러닝 기반 음향 인식 시스템에 관한 연구)

  • Ha, Tae Min;Cho, Seongwon;Tra, Ngo Luong Thanh;Thanh, Do Chi;Lee, Keeseong
    • Smart Media Journal
    • /
    • v.11 no.1
    • /
    • pp.31-37
    • /
    • 2022
  • This paper proposes a study on applying signal processing and deep learning for sound recognition that detects sounds commonly heard in daily life (Screaming, Clapping, Crowd_clapping, Car_passing_by and Back_ground, etc.). In the proposed sound recognition, several techniques related to the spectrum of sound waves, augmentation of sound data, ensemble learning for various predictions, convolutional neural networks (CNN) deep learning, and two-dimensional (2-D) data are used for improving the recognition accuracy. The proposed sound recognition technology shows that it can accurately recognize various sounds through experiments.

Prediction of Static and Dynamic Behavior of Truss Structures Using Deep Learning (딥러닝을 이용한 트러스 구조물의 정적 및 동적 거동 예측)

  • Sim, Eun-A;Lee, Seunghye;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.69-80
    • /
    • 2018
  • In this study, an algorithm applying deep learning to the truss structures was proposed. Deep learning is a method of raising the accuracy of machine learning by creating a neural networks in a computer. Neural networks consist of input layers, hidden layers and output layers. Numerous studies have focused on the introduction of neural networks and performed under limited examples and conditions, but this study focused on two- and three-dimensional truss structures to prove the effectiveness of algorithms. and the training phase was divided into training model based on the dataset size and epochs. At these case, a specific data value was selected and the error rate was shown by comparing the actual data value with the predicted value, and the error rate decreases as the data set and the number of hidden layers increases. In consequence, it showed that it is possible to predict the result quickly and accurately without using a numerical analysis program when applying the deep learning technique to the field of structural analysis.

Deep learning-based custom problem recommendation algorithm to improve learning rate (학습률 향상을 위한 딥러닝 기반 맞춤형 문제 추천 알고리즘)

  • Lim, Min-Ah;Hwang, Seung-Yeon;Kim, Jeong-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.171-176
    • /
    • 2022
  • With the recent development of deep learning technology, the areas of recommendation systems have also diversified. This paper studied algorithms to improve the learning rate and studied the significance results according to words through comparison with the performance characteristics of the Word2Vec model. The problem recommendation algorithm was implemented with the values expressed through the reflection of meaning and similarity test between texts, which are characteristics of the Word2Vec model. Through Word2Vec's learning results, problem recommendations were conducted using text similarity values, and problems with high similarity can be recommended. In the experimental process, it was seen that the accuracy decreased with the quantitative amount of data, and it was confirmed that the larger the amount of data in the data set, the higher the accuracy.

Motion Recognition for Kinect Sensor Data Using Machine Learning Algorithm with PNF Patterns of Upper Extremities

  • Kim, Sangbin;Kim, Giwon;Kim, Junesun
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.4
    • /
    • pp.214-220
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate the availability of software for rehabilitation with the Kinect sensor by presenting an efficient algorithm based on machine learning when classifying the motion data of the PNF pattern if the subjects were wearing a patient gown. Methods: The motion data of the PNF pattern for upper extremities were collected by Kinect sensor. The data were obtained from 8 normal university students without the limitation of upper extremities. The subjects, wearing a T-shirt, performed the PNF patterns, D1 and D2 flexion, extensions, 30 times; the same protocol was repeated while wearing a patient gown to compare the classification performance of algorithms. For comparison of performance, we chose four algorithms, Naive Bayes Classifier, C4.5, Multilayer Perceptron, and Hidden Markov Model. The motion data for wearing a T-shirt were used for the training set, and 10 fold cross-validation test was performed. The motion data for wearing a gown were used for the test set. Results: The results showed that all of the algorithms performed well with 10 fold cross-validation test. However, when classifying the data with a hospital gown, Hidden Markov model (HMM) was the best algorithm for classifying the motion of PNF. Conclusion: We showed that HMM is the most efficient algorithm that could handle the sequence data related to time. Thus, we suggested that the algorithm which considered the sequence of motion, such as HMM, would be selected when developing software for rehabilitation which required determining the correctness of the motion.

Deep Learning based Image Recognition Models for Beef Sirloin Classification (딥러닝 이미지 인식 기술을 활용한 소고기 등심 세부 부위 분류)

  • Han, Jun-Hee;Jung, Sung-Hun;Park, Kyungsu;Yu, Tae-Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • This research examines deep learning based image recognition models for beef sirloin classification. The sirloin of beef can be classified as the upper sirloin, the lower sirloin, and the ribeye, whereas during the distribution process they are often simply unified into the sirloin region. In this work, for detailed classification of beef sirloin regions we develop a model that can learn image information in a reasonable computation time using the MobileNet algorithm. In addition, to increase the accuracy of the model we introduce data augmentation methods as well, which amplifies the image data collected during the distribution process. This data augmentation enables to consider a larger size of training data set by which the accuracy of the model can be significantly improved. The data generated during the data proliferation process was tested using the MobileNet algorithm, where the test data set was obtained from the distribution processes in the real-world practice. Through the computational experiences we confirm that the accuracy of the suggested model is up to 83%. We expect that the classification model of this study can contribute to providing a more accurate and detailed information exchange between suppliers and consumers during the distribution process of beef sirloin.

Performance Evaluation of a Machine Learning Model Based on Data Feature Using Network Data Normalization Technique (네트워크 데이터 정형화 기법을 통한 데이터 특성 기반 기계학습 모델 성능평가)

  • Lee, Wooho;Noh, BongNam;Jeong, Kimoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.785-794
    • /
    • 2019
  • Recently Deep Learning technology, one of the fourth industrial revolution technologies, is used to identify the hidden meaning of network data that is difficult to detect in the security arena and to predict attacks. Property and quality analysis of data sources are required before selecting the deep learning algorithm to be used for intrusion detection. This is because it affects the detection method depending on the contamination of the data used for learning. Therefore, the characteristics of the data should be identified and the characteristics selected. In this paper, the characteristics of malware were analyzed using network data set and the effect of each feature on performance was analyzed when the deep learning model was applied. The traffic classification experiment was conducted on the comparison of characteristics according to network characteristics and 96.52% accuracy was classified based on the selected characteristics.