• Title/Summary/Keyword: Learning assessment

Search Result 1,502, Processing Time 0.039 seconds

Assessment of Classification Accuracy of fNIRS-Based Brain-computer Interface Dataset Employing Elastic Net-Based Feature Selection (Elastic net 기반 특징 선택을 적용한 fNIRS 기반 뇌-컴퓨터 인터페이스 데이터셋 분류 정확도 평가)

  • Shin, Jaeyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.268-276
    • /
    • 2021
  • Functional near-infrared spectroscopy-based brain-computer interface (fNIRS-based BCI) has been receiving much attention. However, we are practically constrained to obtain a lot of fNIRS data by inherent hemodynamic delay. For this reason, when employing machine learning techniques, a problem due to the high-dimensional feature vector may be encountered, such as deteriorated classification accuracy. In this study, we employ an elastic net-based feature selection which is one of the embedded methods and demonstrate the utility of which by analyzing the results. Using the fNIRS dataset obtained from 18 participants for classifying brain activation induced by mental arithmetic and idle state, we calculated classification accuracies after performing feature selection while changing the parameter α (weight of lasso vs. ridge regularization). Grand averages of classification accuracy are 80.0 ± 9.4%, 79.3 ± 9.6%, 79.0 ± 9.2%, 79.7 ± 10.1%, 77.6 ± 10.3%, 79.2 ± 8.9%, and 80.0 ± 7.8% for the various values of α = 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, and 0.5, respectively, and are not statistically different from the grand average of classification accuracy estimated with all features (80.1 ± 9.5%). As a result, no difference in classification accuracy is revealed for all considered parameter α values. Especially for α = 0.5, we are able to achieve the statistically same level of classification accuracy with even 16.4% features of the total features. Since elastic net-based feature selection can be easily applied to other cases without complicated initialization and parameter fine-tuning, we can be looking forward to seeing that the elastic-based feature selection can be actively applied to fNIRS data.

Performance of Support Vector Machine for Classifying Land Cover in Optical Satellite Images: A Case Study in Delaware River Port Area

  • Ramayanti, Suci;Kim, Bong Chan;Park, Sungjae;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1911-1923
    • /
    • 2022
  • The availability of high-resolution satellite images provides precise information without direct observation of the research target. Korea Multi-Purpose Satellite (KOMPSAT), also known as the Arirang satellite, has been developed and utilized for earth observation. The machine learning model was continuously proven as a good classifier in classifying remotely sensed images. This study aimed to compare the performance of the support vector machine (SVM) model in classifying the land cover of the Delaware River port area on high and medium-resolution images. Three optical images, which are KOMPSAT-2, KOMPSAT-3A, and Sentinel-2B, were classified into six land cover classes, including water, road, vegetation, building, vacant, and shadow. The KOMPSAT images are provided by Korea Aerospace Research Institute (KARI), and the Sentinel-2B image was provided by the European Space Agency (ESA). The training samples were manually digitized for each land cover class and considered the reference image. The predicted images were compared to the actual data to obtain the accuracy assessment using a confusion matrix analysis. In addition, the time-consuming training and classifying were recorded to evaluate the model performance. The results showed that the KOMPSAT-3A image has the highest overall accuracy and followed by KOMPSAT-2 and Sentinel-2B results. On the contrary, the model took a long time to classify the higher-resolution image compared to the lower resolution. For that reason, we can conclude that the SVM model performed better in the higher resolution image with the consequence of the longer time-consuming training and classifying data. Thus, this finding might provide consideration for related researchers when selecting satellite imagery for effective and accurate image classification.

Calculating the collapse margin ratio of RC frames using soft computing models

  • Sadeghpour, Ali;Ozay, Giray
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.327-340
    • /
    • 2022
  • The Collapse Margin Ratio (CMR) is a notable index used for seismic assessment of the structures. As proposed by FEMA P695, a set of analyses including the Nonlinear Static Analysis (NSA), Incremental Dynamic Analysis (IDA), together with Fragility Analysis, which are typically time-taking and computationally unaffordable, need to be conducted, so that the CMR could be obtained. To address this issue and to achieve a quick and efficient method to estimate the CMR, the Artificial Neural Network (ANN), Response Surface Method (RSM), and Adaptive Neuro-Fuzzy Inference System (ANFIS) will be introduced in the current research. Accordingly, using the NSA results, an attempt was made to find a fast and efficient approach to derive the CMR. To this end, 5016 IDA analyses based on FEMA P695 methodology on 114 various Reinforced Concrete (RC) frames with 1 to 12 stories have been carried out. In this respect, five parameters have been used as the independent and desired inputs of the systems. On the other hand, the CMR is regarded as the output of the systems. Accordingly, a double hidden layer neural network with Levenberg-Marquardt training and learning algorithm was taken into account. Moreover, in the RSM approach, the quadratic system incorporating 20 parameters was implemented. Correspondingly, the Analysis of Variance (ANOVA) has been employed to discuss the results taken from the developed model. Additionally, the essential parameters and interactions are extracted, and input parameters are sorted according to their importance. Moreover, the ANFIS using Takagi-Sugeno fuzzy system was employed. Finally, all methods were compared, and the effective parameters and associated relationships were extracted. In contrast to the other approaches, the ANFIS provided the best efficiency and high accuracy with the minimum desired errors. Comparatively, it was obtained that the ANN method is more effective than the RSM and has a higher regression coefficient and lower statistical errors.

Determinants of Profitability of Regional Public Hospitals in Korea - Focusing on the COVID-19 Pandemic Period - (지역거점 공공병원의 수익성 결정요인 - COVID-19 유행기간을 중심으로 -)

  • Ji, Seokmin;Ok, Hyunmin
    • Korea Journal of Hospital Management
    • /
    • v.27 no.3
    • /
    • pp.26-38
    • /
    • 2022
  • Purposes: We analyzed the profitability determinants of regional public hospitals during the entire period between 2010 and 2020 and the period before and after COVID-19. We intended to provide fundamental data for developing publicness evaluation index and task of establishing and expanding regional public hospitals. Methodology: The financial and non-financial information of the regional public hospitals were used as the main analysis data; The financial data was established by the Center for Public Healthcare Policy of National Medical Center, and the non-financial data by the Health Insurance Review and Assessment Service. T-test and regression analysis were used. Findings: The results can be summarized in two. First, the main determinants of profitability of the regional public hospitals were appeared to be the total asset turnover rate and the labor cost rate. Second, during the COVID-19 pandemic in the regional public hospitals, the number of sickbeds, the number of isolation rooms, the total asset turnover rate and the labor cost rate appeared to be the factor worsening the profitability. Practical Implication: The results of this study suggests that the management of the regional public hospitals is not aiming for the profit making, but it performs the functions as the community healthcare safety net such as controlling infectious diseases.

The Formation of Managerial Competence of the Future Head of Preschool Education by Means of Information and Communication Technologies

  • Nataliia, Dudnyk;Valentyna, Kryvda;Svitlana, Popychenco;Nelia, Skrypnyk;Tetiana, Duka
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.287-299
    • /
    • 2022
  • The article deals with the formation of managerial competence of the future head of preschool education institution by means of information and communication technology as a prerequisite for his ability to act competently and objectively evaluate actions and understand the interaction of forms and content of preschool education. The article aimed to study the effectiveness of information and communication technologies in the formation of managerial competence of the future head of preschool education institution. To achieve the objectives, the methods of comparative and systematic analysis were used to compare different views on the problem under study, namely, the formation of managerial competence of the future head of preschool education institution by means of information and communication technologies. The authors of the article determined that the use of information and communication technologies in the preparation of future heads of preschool educational institutions is of great importance and is an indicator in the structure of managerial competence. The priority directions of the use of various software products for the study of the modern Ukrainian language, methods of teaching the Ukrainian language contribute to the intensification of learning material. It is noted that the current state of development of information technologies and their widespread use in education satisfies the requirements of the objectivity of the assessment obtained the quality of the control process of forming the managerial competence of the future leader in the context of the general problems of pre-school education. It is noted that the means of information and communication technologies play a leading role in creating new educational policies and projects, as they motivate the way of access to knowledge.

Fermented Laminaria japonica improves working memory and antioxidant defense mechanism in healthy adults: a randomized, double-blind, and placebo-controlled clinical study

  • Kim, Young-Sang;Reid, Storm N.S.;Ryu, Jeh-Kwang;Lee, Bae-Jin;Jeon, Byeong Hwan
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.8
    • /
    • pp.450-461
    • /
    • 2022
  • A randomized, double-blind, and placebo-controlled clinical study was used to determine the cognitive functions related to working memory (WM) and antioxidant properties of fermented Laminaria japonica (FLJ) on healthy volunteers. Eighty participants were divided into a placebo group (n = 40) and FLJ group (n = 40) that received FLJ (1.5 g/day) for 6 weeks. Memory-related blood indices (brain-derived neurotrophic factor, BDNF; angiotensin-converting enzyme; human growth hormone, HGH; insulin-like growth factor-1, IGF-1) and antioxidant function-related indices (catalase, CAT; malondialdehyde, MDA; 8-oxo-2'-deoxyguanosine, 8-oxo-dG; thiobarbituric acid reactive substances, TBARS) were determined before and after the trial. In addition, standardized cognitive tests were conducted using the Cambridge Neuropsychological Test Automated Batteries. Furthermore, the Korean Wechsler Adult Intelligence Scale (K-WAIS)-IV, and the Korean version of the Montreal Cognitive Assessment (MoCA-K) were used to assess the pre and post intake changes on WM-related properties. According to the results, FLJ significantly increased the level of CAT, BDNF, HGH, and IGF-1. FLJ reduced the level of TBARS, MDA, and 8-oxo-dG in serum. Furthermore, FLJ improved physical activities related to cognitive functions such as K-WAIS-IV, MoCA-K, Paired Associates Learning, and Spatial Working Memory compared to the placebo group. Our results suggest that FLJ is a potential candidate to develop functional materials reflecting its capability to induce antioxidant mechanisms together with WM-related indices.

A Study on the Quality Control Method for Geotechnical Information Using AI (AI를 이용한 지반정보 품질관리 방안에 관한 연구)

  • Park, Ka-Hyun;Kim, Jongkwan;Lee, Seokhyung;Kim, Min-Ki;Lee, Kyung-Ryoon;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.87-95
    • /
    • 2022
  • The geotechnical information constructed in the National Geotechnical Information DB System has been extensively used in design, construction, underground safety management, and disaster assessment. However, it is necessary to refine the geotechnical information because it has nearly 300,000 established cases containing a lot of missing or incorrect information. This research proposes a method for automatic quality control of geotechnical information using a fully connected neural network. Significantly, the anomalies in geotechnical information were detected using a database combining the standard penetration test results and strata information of Seoul. Consequently, the misclassification rate for the verification data is confirmed as 5.4%. Overall, the studied algorithm is expected to detect outliers of geotechnical information effectively.

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

Educational needs of severe trauma treatment simulation based on mixed reality: Applying focus group interviews to military hospital nurses (혼합현실 기반 중증외상 처치 시뮬레이션 교육 요구 조사: 군병원 간호사 대상 포커스 그룹 인터뷰 적용)

  • Jang, Seon Mi;Hwang, Sinwoo;Jung, Yoomi;Jung, Eunyoung
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.27 no.4
    • /
    • pp.423-435
    • /
    • 2021
  • Purpose: The purpose of this study is to identify the educational needs of a severe trauma treatment simulation program based on mixed reality which combines element of both virtual reality and augmented reality. Methods: Focus group interviews were conducted with ten military hospital nurses on February 4 and 5, 2021. The collected data were analyzed using a qualitative content analysis. As a framework for data analysis, the educational needs were clustered into the following four categories: teaching contents, teaching methods, teaching evaluation, and teaching environment. Results: The educational needs for each category that emerged were as follows: three subcategories including "realistic education reflecting actual clinical practice" and "motivating education" for teaching contents; five subcategories including "team-based education," "repeated education that acts as embodied learning," and "stepwise education" for teaching methods; six subcategories including "debriefing through video conferences," "team evaluation and evaluator in charge of the team," "combination of knowledge and practice evaluation" for teaching evaluation; six subcategories including "securing safety," "similar settings to real clinical environments," "securing of convenience and accessibility for learners," and "operating as continuing education" for teaching environment. Conclusion: The findings of this study can provide a guide for the development and operation of a severe trauma treatment simulation program based on mixed reality. Moreover, it suggests that research to identify the educational needs of various learners should be conducted.

Freeway Bus-Only Lane Enforcement System Using Infrared Image Processing Technique (적외선 영상검지 기술을 활용한 고속도로 버스전용차로 단속시스템 개발)

  • Jang, Jinhwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.67-77
    • /
    • 2022
  • An automatic freeway bus-only lane enforcement system was developed and assessed in a real-world environment. Observation of a bus-only lane on the Youngdong freeway, South Korea, revealed that approximately 99% of the vehicles violated the high-occupancy vehicle (HOV) lane regulation. However, the current enforcement by the police not only exhibits a low enforcement rate, but also induces unnecessary safety and delay concerns. Since vehicles with six passengers or higher are permitted to enter freeway bus-only lanes, identifying the number of passengers in a vehicle is a core technology required for a freeway bus-only lane enforcement system. To that end, infrared cameras and the You Only Look Once (YOLOv5) deep learning algorithm were utilized. For assessment of the performance of the developed system, two environments, including a controlled test-bed and a real-world freeway, were used. As a result, the performances under the test-bed and the real-world environments exhibited 7% and 8% errors, respectively, indicating satisfactory outcomes. The developed system would contribute to an efficient freeway bus-only lane operations as well as eliminate safety and delay concerns caused by the current manual enforcement procedures.