• Title/Summary/Keyword: Learning and Memory

Search Result 1,273, Processing Time 0.052 seconds

Quality Control Plan of Water Level in Agricultural Reservoirs using a Deep-Learning Based LSTM Model (딥러닝 기반 LSTM 모형을 이용한 농업용 저수지 수위자료 품질관리 방안)

  • Yang, Mi-Hye;Nam, Won-Ho;Shin, An-Kook;Kang, Mun-Sung;Kim, Taegon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.128-128
    • /
    • 2020
  • 최근 농업환경의 변화와 기후변화에 대응하기 위해 농업용수 관리 정보화 및 과학화의 필요성이 증대되어 실시간으로 저수지 저수량과 농업용수 공급량을 파악하기 위해 자동 수위계측시설이 도입되었다. 농림축산식품부의 저수지 자동수위측정기 설치 및 운영지침에 따라 현재 농어촌공사 관리 저수지 1,734개소 및 수로부 1,880개소에 자동수위계가 설치되어 있으며, 저수지와 수로에서 10분 간격으로 수위자료가 생성되고 있다. 농업용 저수지 수문자료의 공인지점은 2016년 6개소에서 2019년 49개소로 증대되고 있으며, 데이터 품질 저하의 최소화 및 신뢰성 있는 수문자료 생성의 필요성이 증가함에 따라 농업용 저수지의 특성을 반영한 저수지 수위 오결측 데이터 보정 방안 및 수문 자료 품질관리 방안이 요구된다. 농업용 저수지의 수위 변화 및 강우-유출 현상은 물리적 모형을 구축하여 기상, 지형 등 영향 인자와 수위(또는 유출)와의 상관관계를 분석하는 것은 무적으로 불가능하였지만, 최근 인공신경망 (Artificial Neural Network, ANN) 등과 같이 black-box 형태의 모형을 이용하여 비선형적인 수문해석이 가능해졌다. 본 연구에서는 빅데이터와 인공신경망을 결합시킨 알고리즘인 딥러닝 (Deep Learning) 기반의 LSTM (Long Short-Term Memory) 모형을 활용하여 농업용 저수지 수위자료를 검토하여 자동계측기에서 발생하는 오류 보정을 위해 품질관리 방안을 제시하고자 한다.

  • PDF

Prediction of rainfall abstraction based on deep learning considering watershed and rainfall characteristic factors (유역 및 강우 특성인자를 고려한 딥러닝 기반의 강우손실 예측)

  • Jeong, Minyeob;Kim, Dae-Hong;Kim, Seokgyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.37-37
    • /
    • 2022
  • 유효우량 산정을 위하여 국내에서 주로 사용되는 모형은 NRCS-CN(Natural Resources Conservation Service - curve number) 모형으로, 유역의 유출 능력을 나타내는 유출곡선지수(runoff curve number, CN)와 같은 NRCS-CN 모형의 매개변수들은 관측 강우-유출자료 또는 토양도, 토지피복지도 등을 이용하여 유역마다 결정된 값이 사용되고 있다. 그러나 유역의 CN값은 유역의 토양 상태와 같은 환경적 조건에 따라 달라질 수 있으며, 이를 반영하기 위하여 선행토양함수조건(antecedent moisture condition, AMC)을 이용하여 CN값을 조정하는 방법이 사용되고 있으나, AMC 조건에 따른 CN 값의 갑작스런 변화는 유출량의 극단적인 변화를 가져올 수 있다. NRCS-CN 모형과 더불어 강우 손실량 산정에 많이 사용되는 모형으로 Green-Ampt 모형이 있다. Green-Ampt 모형은 유역에서 발생하는 침투현상의 물리적 과정을 고려하는 모형이라는 장점이 있으나, 모형에 활용되는 다양한 물리적인 매개변수들을 산정하기 위해서는 유역에 대한 많은 조사가 선행되어야 한다. 또한 이렇게 산정된 매개변수들은 유역 내 토양이나 식생 조건 등에 따른 여러 불확실성을 내포하고 있어 실무적용에 어려움이 있다. 따라서 본 연구에서는, 현재 사용되고 있는 강우손실 모형들의 매개변수를 추정하기 위한 방법을 제시하고자 하였다. 본 연구에서 제시하는 방법은 인공지능(AI) 기술 중 하나인 딥러닝(deep-learning) 기법을 기반으로 하고 있으며, 딥러닝 모형으로는 장단기 메모리(Long Short-Term Memory, LSTM) 모형이 활용되었다. 딥러닝 모형의 입력 데이터는 유역에서의 강우특성이나 토양수분, 증발산, 식생 특성들을 나타내는 인자이며, 모의 결과는 유역에서 발생한 총 유출량으로 강우손실 모형들의 매개변수 값들은 이들을 활용하여 도출될 수 있다. 산정된 매개변수 값들을 강우손실 모형에 적용하여 실제 유역들에서의 유효우량 산정에 활용해보았으며, 동역학파 기반의 강우-유출 모형을 사용하여 유출을 예측해보았다. 예측된 유출수문곡선을 관측 자료와 비교 시 NSE=0.5 이상으로 산정되어 유출이 적절히 예측되었음을 확인했다.

  • PDF

The Effects of Jujadokseo-hwan on the Activation of Brain and Neuroprotactive Effects (주자독서환의 뇌기능 활성 및 신경세포 보호효과)

  • Lee, Yu-Gyung;Chae, Jung-Won
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.241-262
    • /
    • 2009
  • Objectives This study is designed to investigate the effects of Jujadokseo-hwan on the brain ability and inducing oxidative stresses. Methods We measured the changes of regional cerebral blood flow and mean arterial blood pressure. Then we analyzed histological examination, immunohistochemistric response and anti-oxidant activity of Jujadokseo-hwan. Results 1. Treatment of Jujadokseo-hwan significantly increased regional cerebral blood flow but decreased mean arterial blood pressure. 2. Treatment of Jujadokseo-hwan-induced increase of regional cerebral blood flow was significantly inhibited by pretreatment with indomethacin (1 mg/kg, i.p.), an inhibitor of cyclooxygenase. 3. In histological examination through TTC stain, group I was no change, but group II showed that discolored in the most cortical part. Group III showed that decreased discolor in the cortical part. 4. In immunohistochemistric response of BDNF, group II showed that lower response effect. Group III showed that increase response effect. 5. Treatment of Jujadokseo-hwan increased proliferation rates of Glial cell effectively 6. Treatment of Jujadokseo-hwan accelerated proliferation rates of C6 cells in vitro. In addition, protective effects on cell death induced by paraquat, rotenone and hydrogen peroxide. In addition, activity of SOD were increased by treatment with Jujadokseo-hwan. Conclusions In conclusion, Jujadokseo-hwan can improve of the brain ability, learning ability, memory ability and induce ischemic brain injuries.

  • PDF

Multi-Objective Optimum Shape Design of Rotor-Bearing System with Dynamic Constraints Using Immune-Genetic Algorithm (면역.유전 알고리듬을 이용한 로터 베어링시스템의 다목적 형상최적설계)

  • Choe, Byeong-Geun;Yang, Bo-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1661-1672
    • /
    • 2000
  • An immune system has powerful abilities such as memory, recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this pap er, the combined optimization algorithm (Immune- Genetic Algorithm: IGA) is proposed for multi-optimization problems by introducing the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The optimizing ability of the proposed combined algorithm is identified by comparing the result of optimization with simple genetic algorithm for two dimensional multi-peak function which have many local optimums. Also the new combined algorithm is applied to minimize the total weight of the shaft and the transmitted forces at the bearings. The inner diameter oil the shaft and the bearing stiffness are chosen as the design variables. The dynamic characteristics are determined by applying the generalized FEM. The results show that the combined algorithm and reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic conatriants.

A Review of the Domestic Study Trends on Climacteric Syndrome Treated with Pharmacopuncture (갱년기 증후군의 약침 치료에 대한 국내 연구 동향 고찰)

  • Hwang, Hyeon-Ji;Ahn, Soo-Yeon;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.34 no.3
    • /
    • pp.79-95
    • /
    • 2021
  • Objectives: The purpose of this review is to analyze the domestic study trends on climacteric syndrome treated with pharmacopuncture. Methods: We investigated the studies on pharmacopuncture for climacteric syndrome via searching 6 online databases. Results: 18 studies were selected. There were 2 case reports, 1 randomised controlled trial, and 15 animal experiments. There were 14 studies about osteoporosis, 1 study about hot flush and sweating, 1 study about abdominal obesity, 1 study about neck pain, and 1 study about learning disability and memory disorder. Nokyong was most frequently used for pharmacopuncture, followed by Honghwa. 陰谷 (KI10) was most frequently used for acupuncture point, followed by 腎兪 (BL23). Conclusions: This study shows that pharmacopuncture could be one of the effective treatments for climacteric syndrome. More well-designed clinical studies using pharmacopuncture for climacteric syndrome will be needed.

CNN-LSTM Coupled Model for Prediction of Waterworks Operation Data

  • Cao, Kerang;Kim, Hangyung;Hwang, Chulhyun;Jung, Hoekyung
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1508-1520
    • /
    • 2018
  • In this paper, we propose an improved model to provide users with a better long-term prediction of waterworks operation data. The existing prediction models have been studied in various types of models such as multiple linear regression model while considering time, days and seasonal characteristics. But the existing model shows the rate of prediction for demand fluctuation and long-term prediction is insufficient. Particularly in the deep running model, the long-short-term memory (LSTM) model has been applied to predict data of water purification plant because its time series prediction is highly reliable. However, it is necessary to reflect the correlation among various related factors, and a supplementary model is needed to improve the long-term predictability. In this paper, convolutional neural network (CNN) model is introduced to select various input variables that have a necessary correlation and to improve long term prediction rate, thus increasing the prediction rate through the LSTM predictive value and the combined structure. In addition, a multiple linear regression model is applied to compile the predicted data of CNN and LSTM, which then confirms the data as the final predicted outcome.

Learning Memory-Guided Normality with Only Normal Training Data for Novelty Detection in Network Data (네트워크 이상치 탐지를 위한 정상 데이터만을 활용한 메모리 기반 정상성 학습)

  • Lee, Geonsu;Lee, Hochang;Sim, Jaehoon;Koo, Hyung Il;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.83-86
    • /
    • 2020
  • 본 논문에서는 네트워크 이상치 탐지를 위하여 정상 데이터만을 활용한 메모리 기반 정상성 학습 모델을 제안한다. 오토인코더를 기반으로 정상 데이터의 특징을 표현하는 프로토타입을 생성할 수 있도록 신경망을 구성하고, 네트워크 데이터의 특성을 반영하여 쿼리의 수를 한 개로 고정하며, 사용되는 프로토타입의 수를 지정한 값으로 고정하여 모든 프로토타입에 정상 데이터의 특징을 반영할 수 있는 학습 방법을 제안한다. 해당 모델을 네트워크 이상치 탐지 데이터 세트인 Kyoto Honeypot, UNSW-NB15, CICIDS-2018에 적용하여 본 결과 Kyoto Honeypot에서는 0.821, UNSW-NB15에서는 0.854, CICIDS-2018에서는 0.981의 AUROC를 달성했다.

  • PDF

Continual Learning with Mimicking Human Memory System For Multi-domain Response Generator (다중 도메인 답변 생성 모델을 위한 인간의 기억 시스템을 모방하는 지속 학습 기법)

  • Lee, Jun-Beom;Park, Hyeong-Jun;Song, Hyun-Je;Park, Seong-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.215-220
    • /
    • 2021
  • 다중 도메인에 대해 답변 생성 모델이 동작 가능하도록 하는 가장 쉬운 방법은 모든 도메인의 데이터를 순서와 상관없이 한번에 학습하는 것이다. 하지만 이경우, 발화에 상관 없이 지나치게 일반적인 답변을 생성하는 문제가 발생한다. 이에 반해, 도메인을 분리하여 도메인을 순차적으로 학습할 경우 일반적인 답변 생성 문제를 해결할 수 있다. 하지만 이경우 새로운 도메인의 데이터를 학습할 때, 기존에 학습한 도메인에 대한 성능이 저하되는 파괴적 망각 현상이 발생한다. 파괴적 망각 현상을 해결하기 위하여 다양한 지속학습기법이 제안되었으며, 그 중 메모리 리플레이 방법은 새로운 도메인 학습시 기존 도메인의 데이터를 함께 학습하는 방법으로 파괴적 망각 현상을 해결하고자 하였다. 본 논문에서는, 사람의 기억 시스템에 대한 모형인 앳킨슨-쉬프린 기억 모형에서 착안하여 사람이 기억을 저장하는것과 유사한 방법으로 메모리 리플레이 방법의 메모리 관리방법을 제안하였고, 해당 메모리 관리법을 활용하는 메모리 리플레이 방법을 통해 답변 생성 모델의 파괴적 망각 현상을 줄이고자 하였다. 다중 도메인 답변 생성에 대한 데이터셋인 MultiWoZ-2.0를 사용하여 제안 모델을 학습 및 평가하였고, 제안 모델이 다중 도메인 답변 생성 모델의 파괴적 망각 현상을 감소시킴을 확인하였다.

  • PDF

Analysis of Genetics Problem-Solving Processes of High School Students with Different Learning Approaches (학습접근방식에 따른 고등학생들의 유전 문제 해결 과정 분석)

  • Lee, Shinyoung;Byun, Taejin
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.4
    • /
    • pp.385-398
    • /
    • 2020
  • This study aims to examine genetics problem-solving processes of high school students with different learning approaches. Two second graders in high school participated in a task that required solving the complicated pedigree problem. The participants had similar academic achievements in life science but one had a deep learning approach while the other had a surface learning approach. In order to analyze in depth the students' problem-solving processes, each student's problem-solving process was video-recorded, and each student conducted a think-aloud interview after solving the problem. Although students showed similar errors at the first trial in solving the problem, they showed different problem-solving process at the last trial. Student A who had a deep learning approach voluntarily solved the problem three times and demonstrated correct conceptual framing to the three constraints using rule-based reasoning in the last trial. Student A monitored the consistency between the data and her own pedigree, and reflected the problem-solving process in the check phase of the last trial in solving the problem. Student A's problem-solving process in the third trial resembled a successful problem-solving algorithm. However, student B who had a surface learning approach, involuntarily repeated solving the problem twice, and focused and used only part of the data due to her goal-oriented attitude to solve the problem in seeking for answers. Student B showed incorrect conceptual framing by memory-bank or arbitrary reasoning, and maintained her incorrect conceptual framing to the constraints in two problem-solving processes. These findings can help in understanding the problem-solving processes of students who have different learning approaches, allowing teachers to better support students with difficulties in accessing genetics problems.

Korean Sentence Boundary Detection Using Memory-based Machine Learning (메모리 기반의 기계 학습을 이용한 한국어 문장 경계 인식)

  • Han Kun-Heui;Lim Heui-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.4
    • /
    • pp.133-139
    • /
    • 2004
  • This paper proposes a Korean sentence boundary detection system which employs k-nearest neighbor algorithm. We proposed three scoring functions to classify sentence boundary and performed comparative analysis. We uses domain independent linguistic features in order to make a general and robust system. The proposed system was trained and evaluated on the two kinds of corpus; ETRI corpus and KAIST corpus. As experimental results, the proposed system shows about $98.82\%$ precision and $99.09\%$ recall rate even though it was trained on relatively small corpus.

  • PDF