• Title/Summary/Keyword: Learning algorithm

검색결과 4,976건 처리시간 0.028초

처칠랜드의 표상이론과 의미론적 유사성 (The Churchlands' Theory of Representation and the Semantics)

  • 박제윤
    • 인지과학
    • /
    • 제23권2호
    • /
    • pp.133-164
    • /
    • 2012
  • 폴 처칠랜드는 인지신경생물학과 연결주의 AI의 연구 성과로부터, 상태공간 표상이론을 제안하였다. 그 표상이론에 따르면 세계의 다양한 현상들에 대한 우리의 표상은 신경세포 또는 신경세포집단의 활동에 대응하는 위상 상태공간의 지점들로 재현될 수 있다. 그러한 표상 체계를 모의하는 연결주의 AI 신경망은 은닉유닛들 속에 우리가 세계를 인지할 의미론의 범주 체계를 담아내는 것으로 해석된다. 그러한 해석의 관점에 따르면, 신경망은 세계에 대한 범주체계를 은닉 유닛들이 갖는 위상 상태공간의 특정 지점이라고 주장한다. 그러나 포도와 르포르는 그러한 전망을 어둡게 본다. 그의 전망에 따르면, '차원의 개별화' 가능성, 내용 동일성의 '분석/종합 구분'의 측면, 그리고 '부차적 정보'에 따른 상태공간의 상이성 등을 고려할 때 새로운 표상이론은 의미론적 내용 동일성을 주장하기 어렵다. 그 상태공간 표상은 유사성의 기준을 전제하기 때문이다. 본 논문은 처칠랜드 표상이론의 제안과 포도와 르포르의 비판 중에 어느 것이 더 설득력을 갖는지 검토한다. 상태공간 표상이론에 대한 필자의 이해에 따르면, 인공 그물망은 학습알고리즘에 따라서 스스로 내용 유사성의 분별 기준을 조성한다. 이러한 근거에서 포도와 르포르의 지적은 처칠랜드 표상이론에 대한 적절한 공격이 되지 못한다. 또한 그 표상이론은 미래의 인공지능 시스템이 의식 이하의 수준에서 세계를 인지할 개념체계를 어떻게 담아낼 수 있을지 우리에게 이해를 제공한다. 따라서 우리는 앞으로 인지과학 연구의 초점을 무엇에 집중해야 할지도 전망할 수 있게 되었다.

  • PDF

성인간호학 이론수업과 연계한 High-Fidelity 시뮬레이션 교육의 효과 (The Effect of High-Fidelity Simulation Practice Related with Classical Education of Medical Surgical Nursing)

  • 전열어;김경미;황혜영
    • 한국산학기술학회논문지
    • /
    • 제16권12호
    • /
    • pp.8176-8186
    • /
    • 2015
  • 본 연구는 간호 대학생에게 성인간호학 이론수업과 실습교육의 단절로 발생하는 문제점을 해결하기 위해 High-Fidelity 시뮬레이션 교육프로그램을 개발하여 적용함으로써 그 효과를 분석하고자 시행되었다. 분석방법은 성인간호학 이론수업의 학습목표에 따라 비뇨기계 대상자 간호에서 고칼륨혈증 대상자 간호를 위한 알고리즘, 평가체크리스트, 디브리핑을 포함한 시나리오를 개발하여 비동등성 대조군 전후설계(non-equivalent control group pre-test and post-test design)로 측정하였다. 분석결과 일반적 특성과 종속변수의 실험군과 대조군의 동질성이 확보되었다. 고칼륨혈증 대상자 시뮬레이션 교육프로그램이 간호대학생의 간호수행능력, 문제해결능력, 비판적 사고성향, 자기효능감, 간호지식정도에 미치는 효과는 시뮬레이션 교육을 받은 실험군이 대조군 보다 유의하게 증가하였고, 통계적으로 유의한 차이가 있는 것으로 나타났다(t=-83.313, p<.001, t=-3.169, p=.003, t=-2.473, p=.017, t=-4.036, p<.001, t=-5.044, p<.001). 간호학생의 성인간호학 이론수업과 연계한 High-Fidelity 시뮬레이션 프로그램은 간호수행능력, 문제해결능력, 비판적 사고성향, 자기효능감, 간호지식을 높게 하는 것으로 나타났다. 이러한 시뮬레이션 실습교육 프로그램을 교육과정에 적용함으로써 효율적인 실습교육 방안을 제시하고 간호교육의 질 제고에 기여할 수 있을 것이다.

확장된 메모리 다항식 모델을 이용한 전력 증폭기 모델링 및 디지털 사전 왜곡기 설계 (Modeling and Digital Predistortion Design of RF Power Amplifier Using Extended Memory Polynomial)

  • 이영섭;구현철;김정휘;류규태
    • 한국전자파학회논문지
    • /
    • 제19권11호
    • /
    • pp.1254-1264
    • /
    • 2008
  • 본 논문에서는 RF 전력 증폭기의 메모리 효과 모델링의 정확성을 향상시키기 위한 확장된 메모리 다항식 모델을 제안하고 검증하였다. 볼테라 커널 중에서 대각행렬의 성분만을 고려하는 기본적인 메모리 다항식 기반의 모델의 정확성을 향상시키기 위하여 지연차수가 다른 성분들에 의한 교차항을 추가하여 확장 모델을 구성하였다. 제안된 확장 메모리 다항식의 복잡성을 메모리리스 모델, 메모리 다항식 모델과 비교하였다. 확장된 모델을 이용하여 비선형 관계식을 행렬식으로 표현한 후, 최소 자승법(least square method)을 이용하여 변수를 추출하는 모델링 기법을 제시하였다. 또한, 제안된 기법과 간접 학습 방식을 이용하여 디지털 사전 왜곡기를 구현하기 위한 디지털 사전 왜곡부 구현 방안 및 디지털 신호 처리(DSP) 방식을 제시하였다. 제안된 모델의 성능을 검증하기 위하여 2.3 GHz 대역의 WiBro 신호를 인가한 10 W급 GaN HEMT 전력 증폭기와 30W급 LDMOS 전력 증폭기에 대하여 모델의 정확도를 비교 검토하였으며, 10W GaN HEMT 전력 증폭기에 대하여 제안된 모델을 이용하는 간접 학습 방식에 기반한 디지털 사전 왜곡기를 적용하여 인접 채널 간섭비(ACPR) 성능을 검증하였다. 제안한 모델은 메모리 다항식에 비하여 모델의 정확성을 향상시키고 10 W GaN HEMT에 대하여 디지털 사전 왜곡기 적용시 기존 방식에 비하여 3차 비선형 영역에서 평균 3 dB의 ACPR 성능 향상을 보여주었다.

합리적인 측압계수 결정을 위한 인공신경 전문가 시스템의 개발 (Development of an Artificial Neural Expert System for Rational Determination of Lateral Earth Pressure Coefficient)

  • 문상호;문현구
    • 한국지반공학회논문집
    • /
    • 제15권1호
    • /
    • pp.99-112
    • /
    • 1999
  • 국내에서 계측된 92개의 측압계수를 이용하여 심도에 따른 측압계수의 경향을 분석하고 Hoek & Brown이 정의한 측압계수의 범위와 비교하였다. 국내의 측압계수는 1이상이 84%로 대부분의 경우 수평응력이 연직응력보다 크게 나타났다. 지반의 침식. 퇴적 및 암반 풍화. 횡압력에 의한 측압계수의 변화를 분석하기 위해 탄소성 이론을 적용하고 그 결과를 유한요소해석과 비교하였다. 측압계수는 지표 침식과 횡압력이 크고 암질이 양호할수록 증가하였고 퇴적의 경우에 감소하였다. 본 연구를 통하여 여러 지질작용이 측압계수에 미치는 영향을 파악할 수 있었고, 특히 지하공동의 굴착 심도인 천부 암반에서의 측압계수 변화를 파악할 수 있었다. 다층 역전파 학습 알고리즘을 적용한 인공신경망을 이용하여 측압계수 예측 전문가 시스템을 개발하였다. 학습률, 모멘텀 상수 그리고 은닉층 노드수를 고려하여 실측치와 상관계수 0.996 이상의 매우 높은 추론율을 보이는 모델을 선정하였다 학습에서 제외한 9개 계측자료로 이 모델을 검증한 결과, 추론오차의 평균은 20%였으며 상관계수도 0.95 이상으로 측압계수를 예측하는데 있어 높은 신뢰성을 보였다.

  • PDF

하천수위표지점에서 신경망기법을 이용한 홍수위의 예측 (The Flood Water Stage Prediction based on Neural Networks Method in Stream Gauge Station)

  • 김성원;호세살라스
    • 한국수자원학회논문집
    • /
    • 제33권2호
    • /
    • pp.247-262
    • /
    • 2000
  • 본 연구에서는 낙동강유역의 주요 수위표지점중 진동수위표지점에서 홍수위를 예측하기위한 신경망모형인 WSANN모형이 제시되었다. WSANN모형은 모멘트방법, 초기조건의 개선 및 적응학습속도에 의해 보완되어진 개선된 역전파훈련 알고리즘을 이용하였고, 본 연구에 사용된 자료는 훈련자료와 테스팅자료로 분할하였으며, 최적 은닉층 노드수를 결정하기 위하여 은닉층노드와 임계학습횟수로부터 경험식이 유도되었다. 그리고 WSANN모형의 보정은 4개의 훈련자료에 의해 실시되었으며, WSANN22와 WSANN32모형이 모델의 검증에 사용될 최적모형으로 결정되었다. 모형의 검증은 훈련되지 않은 2개의 테스팅자료를 이용하여 모형의 적합성을 평가하기 위하여 이루어 졌으며, 통계분석의 결과를 통하여 홍수위를 합리적으로 예측하는 것으로 나타났다. 따라서 본 연구의 결과를 기본으로 신경망기법을 이용한 실시간 홍수예경보 시스템의 구축 및 홍수위의 제어에 관한 지속적인 연구가 필요것으로 사료된다.

  • PDF

API 특성 정보기반 악성 애플리케이션 식별 기법 (A Scheme for Identifying Malicious Applications Based on API Characteristics)

  • 조태주;김현기;이정환;정문규;이정현
    • 정보보호학회논문지
    • /
    • 제26권1호
    • /
    • pp.187-196
    • /
    • 2016
  • 안드로이드 애플리케이션은 악성코드를 삽입한 후 재서명하여 배포하는 리패키징 공격에 취약하다. 이러한 공격을 통해 사용자의 사생활 정보나 개인정보 유출 등의 피해가 자주 발생하고 있는 실정이다. 모든 안드로이드 애플리케이션은 사용자가 직접 작성한 메소드와 API로 구성된다. 이중 플랫폼의 리소스에 접근하며 실제 애플리케이션의 기능적인 특징을 나타내는 것은 API이고, 사용자가 작성한 메소드 역시 API를 이용하며 기능적 특징을 나타낸다. 본 논문에서는 악성 애플리케이션이 주로 활용하는 민감한 API들을 분석 대상으로 하여 악성애플리케이션이 어떤 행위를 하고, 어떤 API 를 사용하는지 사전에 식별할 수 있는 분석 기법을 제안한다. 사용하는 API를 토대로 API의 특성정보를 기반으로 나이브 베이즈 분류 기법을 적용하여 비슷한 기능을 하는 API에 대해 기계 학습하도록 한다. 이렇게 학습된 결과를 토대로 악성 애플리케이션이 주로 사용하는 API를 분류하고, 애플리케이션의 악성 위험 정도에 대한 정량적 판단 기준을 제시한다. 따라서, 제안 기법은 모바일 애플리케이션의 취약점 정도를 정량적으로 제시해 줌으로써 모바일 애플리케이션 개발자들이 앱 보안성을 사전에 파악하는데 많은 기여를 할 수 있을 것으로 기대된다.

PFCM 클러스터링 기법의 개선 (Improvement of the PFCM(Possibilistic Fuzzy C-Means) Clustering Method)

  • 허경용;최세운;우영운
    • 한국정보통신학회논문지
    • /
    • 제13권1호
    • /
    • pp.177-185
    • /
    • 2009
  • 클러스터링은 주어진 데이터 포인트들을 주어진 개수의 그룹으로 나누는 비지도 학습의 한 방법이다. 클러스터링의 방법 중 하나로 널리 알려진 퍼지 클러스터링은 하나의 포인트가 모든 클러스터에 서로 다른 정도로 소속될 수 있도록 함으로써 하나의 클러스터에만 속할 수 있도록 하는 K-means와 같은 방법에 비해 자연스러운 클러스터 형태의 유추가 가능하고, 잡음에 강한 장점이 있다. 이 논문에서는 기존의 퍼지 클러스터링 방법 중 소속도(membership)와 전형성(typicality)을 동시에 계산해 낼 수 있는 Possibilistic Fuzzy C-Means(PFCM) 방법에 Gath-Geva(CG)의 방법을 적용하여 PFCM을 개선한다. 제안한 방법은 PFCM 장점을 그대로 가지면서도, GG의 거리 척도에 의해 클러스터들 사이의 경계를 강조함으로써 분류 목적에 적합한 소속도를 계산할 수 있으며 전형성은 가우스 형태의 분포에서 생성된 포인트들의 분포 함수를 정확하게 모사함으로써 확률 밀도 추정의 방법으로도 사용될 수 있다. 또한 GG 방법은 Gustafson-Kessel 방법과 달리 클러스터에 포함된 포인트의 개수가 확연히 차이나는 경우에도 정확한 결과를 얻을 수 있다. 이러한 사실들은 실험 결과를 통해 확인할 수 있다.

이질적 지하철승객 기반의 동적 출발시간선택모형 개발 (도심을 목적지로 하는 단일 지하철노선을 중심으로) (Development of A Dynamic Departure Time Choice Model based on Heterogeneous Transit Passengers)

  • 김현명;임용택;신동호;백승걸
    • 대한교통학회지
    • /
    • 제19권5호
    • /
    • pp.119-134
    • /
    • 2001
  • 본 연구에서는 지하철망에서 각 노선을 운행하는 차량과 승객을 동적으로 시뮬레이션 할 수 있는 동적 지하철차량 시뮬레이션 모형과 동적 지하철승객 시뮬레이션 모형을 개발하고, 이를 이용해 통행자 기반의 동적 지하철 출발시간 선택 알고리듬을 개발하였다. 개발된 모형은 개별적인 통행자들의 행태를 이질적(Heterogeneous)으로 설정해 기존에 이용되던 통행자간의 동질성 가정을 완화하였다. 또한, 통행자들은 불완전한 정보와 제한적인 합리성을 가진다고 가정하여 보다 현실적인 시뮬레이션이 가능하도록 하였으며, 간단한 예제 가로망에 대해 모형을 분석하였다. 분석결과 통행자들을 이질적으로 가정한 경우와 동질적으로 가정한 경우간에 출발시간선택에 명확한 차이를 보였다. 통행자들을 동질적으로 가정한 경우 출발시간선택과정에서 기종점에 관련된 특성들이 중요한 역할을 하는 반면 이질적으로 가정한 경우 개별 통행자의 선호특성이 출발시간 선택에 중요한 역할을 하는 것으로 나타났다. 특히 통행자들을 동질적으로 가정할 경우 출발시간 선택결과가 비현실적으로 나타날 수 있음도 보였다. 또, 기존의 확률과정과 달리 선택 차원이나 선택 대안의 수가 많아질 경우 추가적인 고려가 있어야 학습과정을 보다 현실적으로 모형화할 수 있음을 알 수 있었다. 본 연구모형에서는 지하철 통행자의 동적 출발시간 선택과정을 묘사하기 위해 인지 및 의사결정과정으로서 추론과정과 귀납적인 선호형성과정을 학습모형에 포함시킴으로써 보다 현실적인 분석결과가 도출되도록 하였다. 각 승객들은 충분한 학습을 거친 뒤에도 합리적인 선택을 하기보다는 자신의 경험에 따라 형성되는 선호의 영향을 받아 임의적으로 출발시간을 선택하는 문제도 나타날 수 있는 것으로 분석되었다. 이런 분석결과는 기존의 전통적인 교통수요모형(이용자균형 통행배정모형 등)들에서 주로 이용되는 통행자의 완전한 정보, 합리성 및 동질성 가정 등에 따른 집계적인 수요추정결과가 실제로 나타나는 개별적인 통행행태와 다를 수도 있음을 보여 주는 것이다.

  • PDF

인공신경망을 이용한 터널구간의 암반분류 예측 (A prediction of the rock mass rating of tunnelling area using artificial neural networks)

  • 한명식;양인재;김광명
    • 한국터널지하공간학회 논문집
    • /
    • 제4권4호
    • /
    • pp.277-286
    • /
    • 2002
  • 터널을 설계함에 있어서 굴착방법이나 지보패턴을 결정할 때 어려움을 겪는 주된 요인은 현지 지반에 작용하는 응력조건 및 암반상태를 정확히 파악하는데 한계가 있기 때문이다. 현장 장비의 제약, 터널을 굴착 위치까지 접근성이 난이함 등의 기술적인 제약뿐만 아니라 최근에는 민원이나 각종 인허가 등으로 더욱 많은 제약요건이 존재한다. 그럼에도 불구하고 최근들어 대안설계나 턴키설계를 통하여 직접적인 시추에 의존하지 않더라도 미지의 산악터널구간에 대한 지반정보를 획득할 수 있는 고급화된 물리탐사기술이 눈부시게 발전하는 추세이며 이를 통하여 터널굴착구간의 암반에 대한 직 간접적인 지반정보를 입수할 수 있다. 인공신경망 (ANN)의 장점은 이러한 적은 양의 지반정보와 생물학적인 로직화 과정을 통하여 입력변수에 대한 보다 신뢰성있는 결과를 제공하여 준다는 것이다. 본 연구에서는 미지의 터널굴착구간에 대한 예비 지반정보를 입력항목으로 하여 인공신경망의 오류역전파 학습알고리즘기법에 의하여 학습된 패턴을 가지고 미지의 터널굴착구간에 대한 예비 암반분류 (RMR)를 수행하는데 그 목적을 두었다. 이를 위하여 연장 4km에 달하는 ${\triangle}{\triangle}$터널현장에 대한 인공신경망 모형적용시 입력자료에 대한 적정성을 사전 평가하였고, 그 이후에 물리탐사자료를 입력변수로 활용하여 미지의 터널구간에 대한 RMR을 예측하였다. 그 결과 자료의 일치성이나 예측 RMR에 대한 신뢰도가 높은 것으로 나타났으며, 향후에는 학습효과를 높이기 위한 입력변수의 민감도 분석 (sensitivity analysis)수행 및 모델과정에서 노출된 몇가지 문제점 보완등을 통하여 설계에 적극적으로 활용하고자 한다.

  • PDF

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.