• Title/Summary/Keyword: Learning Space

Search Result 1,498, Processing Time 0.025 seconds

Learning Less Random to Learn Better in Deep Reinforcement Learning with Noisy Parameters

  • Kim, Chayoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.127-134
    • /
    • 2019
  • In terms of deep Reinforcement Learning (RL), exploration can be worked stochastically in the action of a state space. On the other hands, exploitation can be done the proportion of well generalization behaviors. The balance of exploration and exploitation is extremely important for better results. The randomly selected action with ε-greedy for exploration has been regarded as a de facto method. There is an alternative method to add noise parameters into a neural network for richer exploration. However, it is not easy to predict or detect over-fitting with the stochastically exploration in the perturbed neural network. Moreover, the well-trained agents in RL do not necessarily prevent or detect over-fitting in the neural network. Therefore, we suggest a novel design of a deep RL by the balance of the exploration with drop-out to reduce over-fitting in the perturbed neural networks.

A Study on the Post-Occupancy Evaluation of the Types of the Learning Space Unit in Elementary Schools (열린 학교 단위학습공간의 구성유형별 건물성능평가에 관한 연구 - 대구광역시 소재 초등학교를 대상으로 -)

  • Choi, Jae-Young;Lee, Sang-Hong;Choi, Moo-Hyuck
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.10 no.2
    • /
    • pp.15-22
    • /
    • 2003
  • The purpose of this study is to find problems and to provide architectural design standards of the Learning Space Unit(L.S.U.) in Elementary Schools through the Post-occupancy Evaluation(POE). In this study, we found six major problems of the type of the L.S.U. in elementary schools. More than 50% of users expressed dissatisfactions in these items : size, safety, cooling facility, noise, privacy and primary meaning for its original purpose. After the interrelation-analysis, we checked pros and cons about each forms of L.S.U. It is the result of analysis of the layout method in L.S.U. 1) "$8.4m{\times}8.4m$" classroom unit got the highest positive responses 2) "2-classroom type" and "4-classroom type" got higher score than "3-classroom type" 3) "Whole faced type" 1) made more active Multi-space than "Partial faced type" 4) prefered prepared "Open-classroom" to "Closed-classroom" 5) 'Zoning type between L.S.U.s' couldn't influence to user's responses. Designers can consult those informations when they plan a new, remodeling and additional elementary school.

Remote Distance Measurement from a Single Image by Automatic Detection and Perspective Correction

  • Layek, Md Abu;Chung, TaeChoong;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3981-4004
    • /
    • 2019
  • This paper proposes a novel method for locating objects in real space from a single remote image and measuring actual distances between them by automatic detection and perspective transformation. The dimensions of the real space are known in advance. First, the corner points of the interested region are detected from an image using deep learning. Then, based on the corner points, the region of interest (ROI) is extracted and made proportional to real space by applying warp-perspective transformation. Finally, the objects are detected and mapped to the real-world location. Removing distortion from the image using camera calibration improves the accuracy in most of the cases. The deep learning framework Darknet is used for detection, and necessary modifications are made to integrate perspective transformation, camera calibration, un-distortion, etc. Experiments are performed with two types of cameras, one with barrel and the other with pincushion distortions. The results show that the difference between calculated distances and measured on real space with measurement tapes are very small; approximately 1 cm on an average. Furthermore, automatic corner detection allows the system to be used with any type of camera that has a fixed pose or in motion; using more points significantly enhances the accuracy of real-world mapping even without camera calibration. Perspective transformation also increases the object detection efficiency by making unified sizes of all objects.

Selection of Three (E)UV Channels for Solar Satellite Missions by Deep Learning

  • Lim, Daye;Moon, Yong-Jae;Park, Eunsu;Lee, Jin-Yi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.42.2-43
    • /
    • 2021
  • We address a question of what are three main channels that can best translate other channels in ultraviolet (UV) and extreme UV (EUV) observations. For this, we compare the image translations among the nine channels of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory using a deep learning model based on conditional generative adversarial networks. In this study, we develop 170 deep learning models: 72 models for single-channel input, 56 models for double-channel input, and 42 models for triple-channel input. All models have a single-channel output. Then we evaluate the model results by pixel-to-pixel correlation coefficients (CCs) within the solar disk. Major results from this study are as follows. First, the model with 131 Å shows the best performance (average CC = 0.84) among single-channel models. Second, the model with 131 and 1600 Å shows the best translation (average CC = 0.95) among double-channel models. Third, among the triple-channel models with the highest average CC (0.97), the model with 131, 1600, and 304 Å is suggested in that the minimum CC (0.96) is the highest. Interestingly they are representative coronal, photospheric, and chromospheric lines, respectively. Our results may be used as a secondary perspective in addition to primary scientific purposes in selecting a few channels of an UV/EUV imaging instrument for future solar satellite missions.

  • PDF

Denoising solar SDO/HMI magnetograms using Deep Learning

  • Park, Eunsu;Moon, Yong-Jae;Lim, Daye;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.43.1-43.1
    • /
    • 2019
  • In this study, we apply a deep learning model to denoising solar magnetograms. For this, we design a model based on conditional generative adversarial network, which is one of the deep learning algorithms, for the image-to-image translation from a single magnetogram to a denoised magnetogram. For the single magnetogram, we use SDO/HMI line-of-sight magnetograms at the center of solar disk. For the denoised magnetogram, we make 21-frame-stacked magnetograms at the center of solar disk considering solar rotation. We train a model using 7004 paris of the single and denoised magnetograms from 2013 January to 2013 October and test the model using 1432 pairs from 2013 November to 2013 December. Our results from this study are as follows. First, our model successfully denoise SDO/HMI magnetograms and the denoised magnetograms from our model are similar to the stacked magnetograms. Second, the average pixel-to-pixel correlation coefficient value between denoised magnetograms from our model and stacked magnetogrmas is larger than 0.93. Third, the average noise level of denoised magnetograms from our model is greatly reduced from 10.29 G to 3.89 G, and it is consistent with or smaller than that of stacked magnetograms 4.11 G. Our results can be applied to many scientific field in which the integration of many frames are used to improve the signal-to-noise ratio.

  • PDF

Research on Pre-service Teacher Education Through Understanding of Conic Sections in Non-Endidean Geometry (비유클리드 기하학에서 이차곡선의 이해를 통한 예비교사교육)

  • Jieun Kang;Daehwan Kim
    • Journal of Science Education
    • /
    • v.47 no.3
    • /
    • pp.263-272
    • /
    • 2023
  • We consider how a pre-service teacher can understand and utilize various concepts of Euclidean geometry by learning conic sections using mathematical definitions in non-Euclidean geometry. In a third-grade class of D University, we used mathematical definitions to demonstrate that learning conic sections in non-Euclidean space, such as taxicab geometry and Minkowski distance space, can aid pre-service teachers by enhancing their ability to acquire and accept new geometric concepts. As a result, learning conic sections using mathematical definitions in taxicab geometry and Minkowski distance space is expected to contribute to enhancing the education of pre-service teachers for Euclidean geometry expertise by fostering creative and flexible thinking.

A Comparison of Meta-learning and Transfer-learning for Few-shot Jamming Signal Classification

  • Jin, Mi-Hyun;Koo, Ddeo-Ol-Ra;Kim, Kang-Suk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.163-172
    • /
    • 2022
  • Typical anti-jamming technologies based on array antennas, Space Time Adaptive Process (STAP) & Space Frequency Adaptive Process (SFAP), are very effective algorithms to perform nulling and beamforming. However, it does not perform equally well for all types of jamming signals. If the anti-jamming algorithm is not optimized for each signal type, anti-jamming performance deteriorates and the operation stability of the system become worse by unnecessary computation. Therefore, jamming classification technique is required to obtain optimal anti-jamming performance. Machine learning, which has recently been in the spotlight, can be considered to classify jamming signal. In general, performing supervised learning for classification requires a huge amount of data and new learning for unfamiliar signal. In the case of jamming signal classification, it is difficult to obtain large amount of data because outdoor jamming signal reception environment is difficult to configure and the signal type of attacker is unknown. Therefore, this paper proposes few-shot jamming signal classification technique using meta-learning and transfer-learning to train the model using a small amount of data. A training dataset is constructed by anti-jamming algorithm input data within the GNSS receiver when jamming signals are applied. For meta-learning, Model-Agnostic Meta-Learning (MAML) algorithm with a general Convolution Neural Networks (CNN) model is used, and the same CNN model is used for transfer-learning. They are trained through episodic training using training datasets on developed our Python-based simulator. The results show both algorithms can be trained with less data and immediately respond to new signal types. Also, the performances of two algorithms are compared to determine which algorithm is more suitable for classifying jamming signals.

Exploring ideas and possibilities of Second Life as an Advanced E-learning Environment (진보된 E-learning 환경으로써 Second Life의 탐색 아이디어와 가능성)

  • Baek, Young-Kyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.280-283
    • /
    • 2009
  • Web 2.0 is changing the paradigm of using the Internet which is affecting the e-learning paradigm. E-learning 2.0 based on the Web 2.0 has a bottom-up approach which learners work on content with social networking and collaboration in their own cyberspace. Second Life is presented as a new e-learning environment. - Flexibility, - Strong social networking, - Residents’ creative activities of Second Life ⇨ Unlimited potential to educators Second Life is a classroom built in 3D cyber space.

  • PDF

Analysis of School Space for Students' Customized Classes: Focused on Vittra Telefonplan School in Sweden (학생 맞춤형 수업을 위한 학교 공간 분석: 스웨덴 비트라 텔레폰플랜(Vittra Telefonplan) 학교를 중심으로)

  • Shin, Jin-Su;Jo, Hyang-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.433-445
    • /
    • 2019
  • This study was designed to create an innovative Korean school space plan. This was done by performing an analysis of cases of student-tailored class operations and the composition of school space in Sweden's Vittra Telefonplan School. To this end, the research team analyzed prior studies, the Vittra school space and the student-tailored classes through an analysis of the literature, documents and video images. First, the OpenSpace was operating classes tailored to each student's academic growth and needs. Second, the open-space school space played a role as the space for student life. Third, the teacher played a role as an active guide and facilitator of students. Forth, the students' individual learning management team actively conducted coding classes by utilizing IT-based learning platforms. The implications of the Vittra School are as follows. When designing a new school, it is recommended to design a small school as small as possible, organize an open space according to the grade and not by the class, and operate the curriculum around the students' grade. When reorganizing existing schools, it is proposed that standardized classrooms be modified for schools with spare classrooms to create learning spaces that can vary for large to small and to practice project-oriented classes at the grade level.

Comparative Analysis of Learning Methods of Fuzzy Clustering-based Neural Network Pattern Classifier (퍼지 클러스터링기반 신경회로망 패턴 분류기의 학습 방법 비교 분석)

  • Kim, Eun-Hu;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1541-1550
    • /
    • 2016
  • In this paper, we introduce a novel learning methodology of fuzzy clustering-based neural network pattern classifier. Fuzzy clustering-based neural network pattern classifier depicts the patterns of given classes using fuzzy rules and categorizes the patterns on unseen data through fuzzy rules. Least squares estimator(LSE) or weighted least squares estimator(WLSE) is typically used in order to estimate the coefficients of polynomial function, but this study proposes a novel coefficient estimate method which includes advantages of the existing methods. The premise part of fuzzy rule depicts input space as "If" clause of fuzzy rule through fuzzy c-means(FCM) clustering, while the consequent part of fuzzy rule denotes output space through polynomial function such as linear, quadratic and their coefficients are estimated by the proposed local least squares estimator(LLSE)-based learning. In order to evaluate the performance of the proposed pattern classifier, the variety of machine learning data sets are exploited in experiments and through the comparative analysis of performance, it provides that the proposed LLSE-based learning method is preferable when compared with the other learning methods conventionally used in previous literature.