• 제목/요약/키워드: Learning Performance Prediction

검색결과 1,151건 처리시간 0.032초

머신러닝 기반의 온실 VPD 예측 모델 비교 (Comparison of Machine Learning-Based Greenhouse VPD Prediction Models)

  • 장경민;이명배;임종현;오한별;신창선;박장우
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권3호
    • /
    • pp.125-132
    • /
    • 2023
  • 본 연구에서는 식물의 영양분 흡수에 따른 식물 성장뿐만 아니라 기공 기능 및 광합성에도 영향을 끼치는 온실의 수증기압차(VPD, Vapor Pressure Deficit)예측을 위한 머신러닝 모델들의 성능을 비교해보았다. VPD 예측을 위해 온실 내·외부 환경요소 및 시계열 데이터의 시간적 요소들과의 상관관계를 확인하고 상관관계가 높은 요소들이 VPD에 어떤 영향을 미치는지 확인하였다. 예측 모델의 성능을 분석하기 전 분석 시계열 데이터의 양(1일, 3일, 7일), 간격(20분, 1시간)이 예측 성능에 미치는 영향을 확인하여 데이터의 양과 간격을 조절하였다. 마지막으로 4개의 머신러닝 예측 모델(XGB Regressor, LGBM Regressor, Random Forest Regressor 등)을 적용하여 모델별 예측 성능을 비교했다. 모델의 예측 결과로 20분 간격의 1일의 데이터를 사용했을 때 LGBM에서 MAE는 0.008, RMSE는 0.011의 가장 높은 예측 성능을 보였다. 또한 20분 후 VPD 예측에 가장 큰 영향을 미치는 요소는 환경적 요인보다는 과거 20분 전의 VPD(VPD_y__71)임을 확인하였다. 본 연구의 결과를 활용하여 VPD 예측을 통해 작물의 생산성을 높이고, 온실의 결로, 병 발생 예방 등이 가능하다. 향후 온실의 환경 데이터 예측뿐만 아니라 더 나아가 생산량 예측, 스마트팜 제어 모델 등 다양한 분야에 활용할 수 있을 것이다.

TCN 딥러닝 모델을 이용한 최대전력 예측에 관한 연구 (A Study on Peak Load Prediction Using TCN Deep Learning Model)

  • 이정일
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권6호
    • /
    • pp.251-258
    • /
    • 2023
  • 안정적으로 전력을 공급하고 전력계통을 운영하기 위해서는 최대전력을 정확히 예측해야 한다. 특히, 최대전력이 높게 발생하는 겨울과 여름에는 그 중요성이 매우 커진다. 최대전력을 실제 수요보다 높게 예측하면 발전소 기동 비용이 증가하여 경제적 손실이 발생하고, 최대전력을 실제 수요보다 낮게 예측하면 기동이 가능한 발전소가 부족하여 정전이 발생할 수 있다. 최대전력의 예측 오차를 최소화함으로써 경제적 손실과 정전을 예방할 수 있다. 본 논문에서는 최대전력 예측의 오차를 최소화하기 위하여 최신 딥러닝 모델인 TCN을 이용한다. 딥러닝 모델은 하이퍼 파라미터를 어떻게 설정하느냐에 따라 성능 차이가 발생하므로, TCN의 하이퍼 파라미터를 최적화하는 방법을 제안한다. 2006년부터 2021년까지의 데이터를 입력하여 모델을 훈련하고, 2022년의 데이터를 이용하여 예측 오차를 실험하였다. 실험을 수행한 결과 본 논문에서 제안한 최적화 방법을 이용한 TCN 모델의 성능이 다른 딥러닝 모델보다 성능이 우수한 것을 확인하였다.

머신러닝과 딥러닝을 이용한 영산강의 Chlorophyll-a 예측 성능 비교 및 변화 요인 분석 (Comparison of Chlorophyll-a Prediction and Analysis of Influential Factors in Yeongsan River Using Machine Learning and Deep Learning)

  • 심선희;김유흔;이혜원;김민;최정현
    • 한국물환경학회지
    • /
    • 제38권6호
    • /
    • pp.292-305
    • /
    • 2022
  • The Yeongsan River, one of the four largest rivers in South Korea, has been facing difficulties with water quality management with respect to algal bloom. The algal bloom menace has become bigger, especially after the construction of two weirs in the mainstream of the Yeongsan River. Therefore, the prediction and factor analysis of Chlorophyll-a (Chl-a) concentration is needed for effective water quality management. In this study, Chl-a prediction model was developed, and the performance evaluated using machine and deep learning methods, such as Deep Neural Network (DNN), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost). Moreover, the correlation analysis and the feature importance results were compared to identify the major factors affecting the concentration of Chl-a. All models showed high prediction performance with an R2 value of 0.9 or higher. In particular, XGBoost showed the highest prediction accuracy of 0.95 in the test data.The results of feature importance suggested that Ammonia (NH3-N) and Phosphate (PO4-P) were common major factors for the three models to manage Chl-a concentration. From the results, it was confirmed that three machine learning methods, DNN, RF, and XGBoost are powerful methods for predicting water quality parameters. Also, the comparison between feature importance and correlation analysis would present a more accurate assessment of the important major factors.

SAINT 기반의 소프트웨어 결함 예측 (Software Defect Prediction Based on SAINT)

  • ;주은정;이정화;류덕산
    • 정보처리학회 논문지
    • /
    • 제13권5호
    • /
    • pp.236-242
    • /
    • 2024
  • 소프트웨어 결함 예측(SDP)은 오류가 발생할 가능성이 있는 모듈을 사전에 식별하여 소프트웨어 개발의 효율을 높이고 있다. SDP에서의 주과제는 예측 성능을 향상시키는것에 있다. 최근 연구에서는 딥러닝 기법이 소프트웨어 결함 예측(SDP) 분야에 적용되어 있으며, 특히 구조화된 데이터를 분석하는 데 뛰어난 성능을 보이고 있는 SAINT 모델이 주목받고 있다. 본 연구는 SAINT 모델을 다른 주요 모델(XGBoost, Random Forest, CatBoost)과 비교하여 SDP에 적용 가능한 최신 딥러닝 기법을 조사하였다. SAINT는 일관되게 우수한 성능을 보여주며 결함 예측 정확도 향상에 효과적임을 입증하였다. 이 연구 결과는 실용적인 소프트웨어 개발 상황에서 결함 예측 방법론을 발전시킬 수 있는 SAINT의 잠재력을 강조하며, 교차 검증, 특성 스케일링, 비교 분석 등을 포함한 철저한 방법론을 통해 수행되었다.

협동로봇의 건전성 관리를 위한 머신러닝 알고리즘의 비교 분석 (Comparative Analysis of Machine Learning Algorithms for Healthy Management of Collaborative Robots)

  • 김재은;장길상;임국화
    • 대한안전경영과학회지
    • /
    • 제23권4호
    • /
    • pp.93-104
    • /
    • 2021
  • In this paper, we propose a method for diagnosing overload and working load of collaborative robots through performance analysis of machine learning algorithms. To this end, an experiment was conducted to perform pick & place operation while changing the payload weight of a cooperative robot with a payload capacity of 10 kg. In this experiment, motor torque, position, and speed data generated from the robot controller were collected, and as a result of t-test and f-test, different characteristics were found for each weight based on a payload of 10 kg. In addition, to predict overload and working load from the collected data, machine learning algorithms such as Neural Network, Decision Tree, Random Forest, and Gradient Boosting models were used for experiments. As a result of the experiment, the neural network with more than 99.6% of explanatory power showed the best performance in prediction and classification. The practical contribution of the proposed study is that it suggests a method to collect data required for analysis from the robot without attaching additional sensors to the collaborative robot and the usefulness of a machine learning algorithm for diagnosing robot overload and working load.

대공간 구조물의 UHPC 적용을 위한 기계학습 기반 강도예측기법 (Machine Learning Based Strength Prediction of UHPC for Spatial Structures)

  • 이승혜;이재홍
    • 한국공간구조학회논문집
    • /
    • 제20권4호
    • /
    • pp.111-121
    • /
    • 2020
  • There has been increasing interest in UHPC (Ultra-High Performance Concrete) materials in recent years. Owing to the superior mechanical properties and durability, the UHPC has been widely used for the design of various types of structures. In this paper, machine learning based compressive strength prediction methods of the UHPC are proposed. Various regression-based machine learning models were built to train dataset. For train and validation, 110 data samples collected from the literatures were used. Because the proportion between the compressive strength and its composition is a highly nonlinear, more advanced regression models are demanded to obtain better results. The complex relationship between mixture proportion and concrete compressive strength can be predicted by using the selected regression method.

텐서플로우를 이용한 주가 예측에서 가격-기반 입력 피쳐의 예측 성능 평가 (Performance Evaluation of Price-based Input Features in Stock Price Prediction using Tensorflow)

  • 송유정;이재원;이종우
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권11호
    • /
    • pp.625-631
    • /
    • 2017
  • 과거부터 현재까지 주식시장에 대한 주가 변동 예측은 풀리지 않는 난제이다. 주가를 과학적으로 예측하기 위해 다양한 시도 및 연구들이 있어왔지만, 아직까지 정확한 미래를 예측하는 것은 불가능하다. 하지만, 주가 예측은 경제, 수학, 물리 그리고 전산학 등 여러 관련 분야에서 오랜 관심의 대상이 되어왔다. 본 논문에서는 최근 각광 받고 있는 딥러닝(Deep-Learning)을 이용하여 주가의 변동패턴을 학습하고 미래를 예측하고자한다. 본 연구에서는 오픈소스 딥러닝 프레임워크인 텐서플로우를 이용하여 총 3가지 학습 모델을 제시하였으며, 각 학습모델은 각기 다른 입력 피쳐들을 받아들여 학습을 진행한다. 입력 피쳐는 이전 연구에서 사용한 단순 가격 데이터를 확장해 입력 피쳐 개수를 증가시켜가며 실험을 하였다. 세 가지 예측 모델의 학습 성능을 측정했으며, 이를 통해 가격-기반 입력 피쳐에 따라 달라지는 예측 모델의 성능 변화 비교 분석하여 가격-기반 입력 피쳐가 주가예측에 미치는 영향을 평가하였다.

딥러닝을 이용한 소프트웨어 결함 심각도 예측 (Prediction of Software Fault Severity using Deep Learning Methods)

  • 홍의석
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권6호
    • /
    • pp.113-119
    • /
    • 2022
  • 소프트웨어 결함 예측 작업 시 단순히 결함 유무만을 예측하는 이진 분류 모델에 비해 결함의 심각도 범주를 예측하는 다중 분류 모델은 훨씬 유용하게 사용될 수 있다. 소수의 심각도 기반 결함 예측 모델들이 제안되었지만 딥러닝 기법을 사용한 분류기는 없었다. 본 논문은 3개, 5개의 은닉층을 갖고 은닉층 노드수가 고정된 구조와 변화하는 구조의 MLP 모델들을 제작하였다. 모델 평가 실험 결과 기존 기계학습 모델들 중 가장 좋은 성능을 보인 MLPs보다 MLP 기반 딥러닝 모델들은 Accuracy와 AUC 모두 유의미하게 더 우수한 성능을 보였다. 특히 노드수 고정 구조에서는 은닉 층수 3, 배치사이즈 32, 노드수 64인 모델 구조가 가장 좋은 성능을 보였다.

Transfer Learning-Based Feature Fusion Model for Classification of Maneuver Weapon Systems

  • Jinyong Hwang;You-Rak Choi;Tae-Jin Park;Ji-Hoon Bae
    • Journal of Information Processing Systems
    • /
    • 제19권5호
    • /
    • pp.673-687
    • /
    • 2023
  • Convolutional neural network-based deep learning technology is the most commonly used in image identification, but it requires large-scale data for training. Therefore, application in specific fields in which data acquisition is limited, such as in the military, may be challenging. In particular, the identification of ground weapon systems is a very important mission, and high identification accuracy is required. Accordingly, various studies have been conducted to achieve high performance using small-scale data. Among them, the ensemble method, which achieves excellent performance through the prediction average of the pre-trained models, is the most representative method; however, it requires considerable time and effort to find the optimal combination of ensemble models. In addition, there is a performance limitation in the prediction results obtained by using an ensemble method. Furthermore, it is difficult to obtain the ensemble effect using models with imbalanced classification accuracies. In this paper, we propose a transfer learning-based feature fusion technique for heterogeneous models that extracts and fuses features of pre-trained heterogeneous models and finally, fine-tunes hyperparameters of the fully connected layer to improve the classification accuracy. The experimental results of this study indicate that it is possible to overcome the limitations of the existing ensemble methods by improving the classification accuracy through feature fusion between heterogeneous models based on transfer learning.

Enhancing prediction accuracy of concrete compressive strength using stacking ensemble machine learning

  • Yunpeng Zhao;Dimitrios Goulias;Setare Saremi
    • Computers and Concrete
    • /
    • 제32권3호
    • /
    • pp.233-246
    • /
    • 2023
  • Accurate prediction of concrete compressive strength can minimize the need for extensive, time-consuming, and costly mixture optimization testing and analysis. This study attempts to enhance the prediction accuracy of compressive strength using stacking ensemble machine learning (ML) with feature engineering techniques. Seven alternative ML models of increasing complexity were implemented and compared, including linear regression, SVM, decision tree, multiple layer perceptron, random forest, Xgboost and Adaboost. To further improve the prediction accuracy, a ML pipeline was proposed in which the feature engineering technique was implemented, and a two-layer stacked model was developed. The k-fold cross-validation approach was employed to optimize model parameters and train the stacked model. The stacked model showed superior performance in predicting concrete compressive strength with a correlation of determination (R2) of 0.985. Feature (i.e., variable) importance was determined to demonstrate how useful the synthetic features are in prediction and provide better interpretability of the data and the model. The methodology in this study promotes a more thorough assessment of alternative ML algorithms and rather than focusing on any single ML model type for concrete compressive strength prediction.