• Title/Summary/Keyword: Learning Parameter

Search Result 677, Processing Time 0.03 seconds

Design of DNP Controller for Robust Control Auto-Systems (DNP에 의한 자동화 시스템의 강인제어기 설계)

  • 김종옥;조용민;민병조;송용화;조현섭
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.121-126
    • /
    • 1999
  • In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed. In order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. Also, the learning architecture to compute inverse kinematic coordinates transformations in the manipulator of auto-equipment systems is developed and the example that DNP can be used is explained. The architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

  • PDF

A Development of Learning Control Method for the Accurate Control of Industrial Robot (산업용 로봇트의 정밀제어를 위한 학습제어 방법의 개발)

  • 원광호;허경무
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.346-346
    • /
    • 2000
  • We proposed a method of second-order iterative learning control with feedback, which shows an enhancement of convergence speed and robustness to the disturbances in our previous study. In this paper, we show that the proposed second-order iterative learning control algorithm with feedback is more effective and has better convergence performance than the algorithm without feedback in the case of the existence of initial condition errors. And the convergence woof of the proposed algorithm in the case of the existence of initial condition error is given in detail, and the effectiveness of the Proposed algorithm is shown by simulation results.

  • PDF

Design of DNP Controller for Robust Control of Auto-Equipment Systems (자동화 설비시스템의 강인제어를 위한 DNP 제어기 설계)

  • ;趙賢燮
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.187-187
    • /
    • 1999
  • in order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed. Also, the learning architecture to compute inverse kinematic coordinates transformations in the manipulator of auto-equipment system is developed and the example that DNP can be used is explained. The architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulation are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

ICALIB: A Heuristic and Machine Learning Approach to Engine Model Calibration (휴리스틱 및 기계 학습을 응용한 엔진 모델의 보정)

  • Kwang Ryel Ryu
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.84-92
    • /
    • 1993
  • Calibration of Engine models is a painstaking process but very important for successful application to automotive industry problems. A combined heuristic and machine learning approach has therefore been adopted to improve the efficiency of model calibration. We developed an intelligent calibration program called ICALIB. It has been used on a daily basis for engine model applications, and has reduced the time required for model calibrations from many hours to a few minutes on average. In this paper, we describe the heuristic control strategies employed in ICALIB such as a hill-climbing search based on a state distance estimation function, incremental problem solution refinement by using a dynamic tolerance window, and calibration target parameter ordering for guiding the search. In addition, we present the application of amachine learning program called GID3*for automatic acquisition of heuristic rules for ordering target parameters.

  • PDF

Development of Learning Controller with Feedback for Equipment System (설비시스템을 위한 궤환을 갖는 학습제어기 개발)

  • 허경무
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.2
    • /
    • pp.108-114
    • /
    • 1998
  • In this paper a second-order iterative learning control algorithm with feedback is proposed for use in real equipment systems requiring accurate and robust control. The convergence condition of the proposed algorithm is provided, and a simulation result is given to show the effectiveness of the proposed algorithm. It is shown that, by adding a feedback term in learning control algorithm, convergence speed, robustness to disturbances or system parameter variations can be improved.proved.

  • PDF

Self-Organizing Fuzzy Modeling Based on Hyperplane-Shaped Clusters (다차원 평면 클러스터를 이용한 자기 구성 퍼지 모델링)

  • Koh, Taek-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.985-992
    • /
    • 2001
  • This paper proposes a self-organizing fuzzy modeling(SOFUM)which an create a new hyperplane shaped cluster and adjust parameters of the fuzzy model in repetition. The suggested algorithm SOFUM is composed of four steps: coarse tuning. fine tuning cluster creation and optimization of learning rates. In the coarse tuning fuzzy C-regression model(FCRM) clustering and weighted recursive least squared (WRLS) algorithm are used and in the fine tuning gradient descent algorithm is used to adjust parameters of the fuzzy model precisely. In the cluster creation, a new hyperplane shaped cluster is created by applying multiple regression to input/output data with relatively large fuzzy entropy based on parameter tunings of fuzzy model. And learning rates are optimized by utilizing meiosis-genetic algorithm in the optimization of learning rates To check the effectiveness of the suggested algorithm two examples are examined and the performance of the identified fuzzy model is demonstrated via computer simulation.

  • PDF

On the Classification of Online Handwritten Digits using the Enhanced Back Propagation of Neural Networks (개선된 역전파 신경회로망을 이용한 온라인 필기체 숫자의 분류에 관한 연구)

  • Hong, Bong-Hwa
    • The Journal of Information Technology
    • /
    • v.9 no.4
    • /
    • pp.65-74
    • /
    • 2006
  • The back propagation of neural networks has the problems of falling into local minimum and delay of the speed by the iterative learning. An algorithm to solve the problem and improve the speed of the learning was already proposed in[8], which updates the learning parameter related with the connection weight. In this paper, we propose the algorithm generating initial weight to improve the efficiency of the algorithm by offering the difference between the input vector and the target signal to the generating function of initial weight. The algorithm proposed here can classify more than 98.75% of the handwritten digits and this rate shows 30% more effective than the other previous methods.

  • PDF

Implementation of Image Enhancement Algorithm using Learning User Preferences (선호도 학습을 통한 이미지 개선 알고리즘 구현)

  • Lee, YuKyong;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.71-75
    • /
    • 2018
  • Image enhancement is a necessary end essential step after taking a picture with a digital camera. Many different photo software packages attempt to automate this process with various auto enhancement techniques. This paper provides and implements a system that can learn a user's preferences and apply the preferences into the process of image enhancement. Five major components are applied to the implemented system, which are computing a distance metric, finding a training set, finding an optimal parameter set, training and finally enhancing the input image. To estimate the validity of the method, we carried out user studies, and the fact that the implemented system was preferred over the method without learning user preferences.

Machine learning-based regression analysis for estimating Cerchar abrasivity index

  • Kwak, No-Sang;Ko, Tae Young
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.219-228
    • /
    • 2022
  • The most widely used parameter to represent rock abrasiveness is the Cerchar abrasivity index (CAI). The CAI value can be applied to predict wear in TBM cutters. It has been extensively demonstrated that the CAI is affected significantly by cementation degree, strength, and amount of abrasive minerals, i.e., the quartz content or equivalent quartz content in rocks. The relationship between the properties of rocks and the CAI is investigated in this study. A database comprising 223 observations that includes rock types, uniaxial compressive strengths, Brazilian tensile strengths, equivalent quartz contents, quartz contents, brittleness indices, and CAIs is constructed. A linear model is developed by selecting independent variables while considering multicollinearity after performing multiple regression analyses. Machine learning-based regression methods including support vector regression, regression tree regression, k-nearest neighbors regression, random forest regression, and artificial neural network regression are used in addition to multiple linear regression. The results of the random forest regression model show that it yields the best prediction performance.

Robust Parameter Design via Taguchi's Approach and Neural Network

  • Tsai, Jeh-Hsin;Lu, Iuan-Yuan
    • International Journal of Quality Innovation
    • /
    • v.6 no.1
    • /
    • pp.109-118
    • /
    • 2005
  • The parameter design is the most emphasized measure by researchers for a new products development. It is critical for makers to achieve simultaneously in both the time-to-market production and the quality enhancement. However, there are difficulties in practical application, such as (1) complexity and nonlinear relationships co-existed among the system's inputs, outputs and control parameters, (2) interactions occurred among parameters, (3) where the adjustment factors of Taguchi's two-phase optimization procedure cannot be sure to exist in practice, and (4) for some reasons, the data became lost or were never available. For these incomplete data, the Taguchi methods cannot treat them well. Neural networks have a learning capability of fault tolerance and model free characteristics. These characteristics support the neural networks as a competitive tool in processing multivariable input-output implementation. The successful fields include diagnostics, robotics, scheduling, decision-making, prediction, etc. This research is a case study of spherical annealing model. In the beginning, an original model is used to pre-fix a model of parameter design. Then neural networks are introduced to achieve another model. Study results showed both of them could perform the highest spherical level of quality.