• Title/Summary/Keyword: Learning Navigation

Search Result 358, Processing Time 0.021 seconds

Vibration Control a Flexible Single Link Robot Manipulator Using Neural Networks (신경회로망을 이용한 유연성 단일 링크 로봇 매니퓰레이터의 진동제어)

  • 탁한호;이상배
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.3
    • /
    • pp.55-66
    • /
    • 1997
  • In this paper, applications of neural networks to vibration control of flexible single link robot manipulator are ocnsidered. The architecture of neural networks is a hidden layer, which is comprised of self-recurrent one. Tow neural networks are utilized in a control system ; one as an identifier is called neuro identifier and the othe ra s a controller is called neuro controller. The neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by dynamic error-backpropagation algorithm(DEA). To guarantee concegence and to get faster learning, an approach that uses adaptive learning rates is developed by introducing a Lyapunov function. When a flexible manipulator is ratated by a motor through the fixed end, transverse vibration may occur. The motor torque should be controlle dinsuch as way, that the motor is rotated by a specified angle. while simulataneously stabilizing vibration of the flexible manipulators so that it is arrested as soon as possible at the end of rotation. Accurate vibration control of lightweight manipulator during the large body motions, as well as the flexural vibrations. Therefore, dynamic models for a flexible single link manipulator is derived, and LQR controller and nerual networks controller are composed. The effectiveness of the proposed nerual networks control system is confirmed by experiments.

  • PDF

The STCW Manila Amendments and its Challenges to the Far East

  • Chae, Chong-Ju
    • Journal of Navigation and Port Research
    • /
    • v.38 no.3
    • /
    • pp.193-202
    • /
    • 2014
  • The comprehensive review of the STCW 1978, as amended in 1995 and associated Code was carried out from 2006 to 2010. These amendments will have a certain degree of impact on Maritime Education and Training(MET) institutes in terms of education and training of seafarer worldwide. Particularly, the Far East region countries are effected more than other regions since they covered about 30% of officers and 37% ratings in the world. In view of these facts this dissertation conceived to analyze the problems in the Far East main seafarer supply countries faced the implementation of "STCW Manila Amendments" To analyze these problems, this dissertation carried out questionnaire research to 7 targeted main MET of major Far East seafarer supply countries. After research this dissertation suggests the possible solutions such as, Joint On-Board Training Center; Joint Asia Maritime E-learning Systems; methods to reducing work-load, ship inspection burden and determine mandatory minimum safety manning standards in a safe way; technical cooperation fund to installation of training equipment; and clarify vague terminology of STCW Manila Amendments, to solve problems identified through the questionnaires.

Virtual Celestial Learning System Based on Virtual Reality Technology (가상현실기술에 기반한 가상천체학습시스템)

  • 정성태
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1449-1455
    • /
    • 2003
  • This paper describes the development of an effective celestial learning system using virtual reality technology. Our system support a deep immersion and comfortable navigation by using HMD(Head Mounted Display) and 3 dimensional mouse. We make three dimensional celestial image dynamically with OpenGL and display the rendered image to HMD. Students can feel that they are on the space ship and navigate through the celestial body. During the navigation, students can get the information of each planet and solve given problems. Our system shows that virtual reality can be used as an effective tool for training and education.

A Study on the Forecasting of Container Volume using Neural Network (신경망을 이용한 컨테이너 물동량 예측에 관한 연구)

  • Park, Sung-Young;Lee, Chul-Young
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.183-188
    • /
    • 2002
  • The forecast of a container traffic has been very important for port and development. Generally, Statistic methods, such as moving average method, exponential smoothing, and regression analysis have been much used for traffic forecasting. But, considering various factors related to the port affect the forecasting of container volume, neural network of parallel processing system can be effective to forecast container volume based on various factors. This study discusses the forecasting of volume by using the neural, network with back propagation learning algorithm. Affected factors are selected based on impact vector on neural network, and these selected factors are used to forecast container volume. The proposed the forecasting algorithm using neural network was compared to the statistic methods.

Research on Development of VR Realistic Sign Language Education Content Using Hand Tracking and Conversational AI (Hand Tracking과 대화형 AI를 활용한 VR 실감형 수어 교육 콘텐츠 개발 연구)

  • Jae-Sung Chun;Il-Young Moon
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.369-374
    • /
    • 2024
  • This study aims to improve the accessibility and efficiency of sign language education for both hearing impaired and non-deaf people. To this end, we developed VR realistic sign language education content that integrates hand tracking technology and conversational AI. Through this content, users can learn sign language in real time and experience direct communication in a virtual environment. As a result of the study, it was confirmed that this integrated approach significantly improves immersion in sign language learning and contributes to lowering the barriers to sign language learning by providing learners with a deeper understanding. This presents a new paradigm for sign language education and shows how technology can change the accessibility and effectiveness of education.

A Neural Network and Kalman Filter Hybrid Approach for GPS/INS Integration

  • Wang, Jianguo Jack;Wang, Jinling;Sinclair, David;Watts, Leo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.277-282
    • /
    • 2006
  • It is well known that Kalman filtering is an optimal real-time data fusion method for GPS/INS integration. However, it has some limitations in terms of stability, adaptability and observability. A Kalman filter can perform optimally only when its dynamic model is correctly defined and the noise statistics for the measurement and process are completely known. It is found that estimated Kalman filter states could be influenced by several factors, including vehicle dynamic variations, filter tuning results, and environment changes, etc., which are difficult to model. Neural networks can map input-output relationships without apriori knowledge about them; hence a proper designed neural network is capable of learning and extracting these complex relationships with enough training. This paper presents a GPS/INS integrated system that combines Kalman filtering and neural network algorithms to improve navigation solutions during GPS outages. An Extended Kalman filter estimates INS measurement errors, plus position, velocity and attitude errors etc. Kalman filter states, and gives precise navigation solutions while GPS signals are available. At the same time, a multi-layer neural network is trained to map the vehicle dynamics with corresponding Kalman filter states, at the same rate of measurement update. After the output of the neural network meets a similarity threshold, it can be used to correct INS measurements when no GPS measurements are available. Selecting suitable inputs and outputs of the neural network is critical for this hybrid method. Detailed analysis unveils that some Kalman filter states are highly correlated with vehicle dynamic variations. The filter states that heavily impact system navigation solutions are selected as the neural network outputs. The principle of this hybrid method and the neural network design are presented. Field test data are processed to evaluate the performance of the proposed method.

  • PDF

A study on the Generation Method of Aircraft Wing Flexure Data Using Generative Adversarial Networks (생성적 적대 신경망을 이용한 항공기 날개 플렉셔 데이터 생성 방안에 관한 연구)

  • Ryu, Kyung-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.179-184
    • /
    • 2022
  • The accurate wing flexure model is required to improve the transfer alignment performance of guided weapon system mounted on a wing of fighter aircraft or armed helicopter. In order to solve this problem, mechanical or stochastical modeling methods have been studying, but modeling accuracy is too low to be applied to weapon systems. The deep learning techniques that have been studying recently are suitable for nonlinear. However, operating fighter aircraft for deep-learning modeling to secure a large amount of data is practically difficult. In this paper, it was used to generate amount of flexure data samples that are similar to the actual flexure data. And it was confirmed that generated data is similar to the actual data by utilizing "measures of similarity" which measures how much alike the two data objects are.

A Self-Designing Method of Behaviors in Behavior-Based Robotics (행위 기반 로봇에서의 행위의 자동 설계 기법)

  • Yun, Do-Yeong;O, Sang-Rok;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.607-612
    • /
    • 2002
  • An automatic design method of behaviors in behavior-based robotics is proposed. With this method, a robot can design its behaviors by itself without aids of human designer. Automating design procedure of behaviors can make the human designer free from somewhat tedious endeavor that requires to predict all possible situations in which the robot will work and to design a suitable behavior for each situation. A simple reinforcement learning strategy is the main frame of this method and the key parameter of the learning process is significant change of reward value. A successful application to mobile robot navigation is reported too.

Analyzing Learners' Activities in the Collaborative Learning Based Group Project Using the Wiki Environment: a Case of the Google Sites Use (위키 환경을 활용한 학습자의 협력학습 기반 그룹 프로젝트 활동 분석: 구글 사이트 활용 사례를 중심으로)

  • Jung, Young-Sook;Park, Ok-Nam
    • Journal of the Korean Society for information Management
    • /
    • v.26 no.3
    • /
    • pp.239-259
    • /
    • 2009
  • The study aims at investigating students' behaviors and perceptions regarding the collaborative learning based group project using the wiki environment. The study utilized Google Sites as a case, and analyzed file unloads, the use of web pages, navigation bars, and comments as well as surveys. The study discusses main characteristics of students' activities in the collaborative learning group project, which are drawn from the analysis of students' behaviors and perceptions. The study also provides implications for improvement of wiki environment to support collaborative learning in education.

Leveraging Visibility-Based Rewards in DRL-based Worker Travel Path Simulation for Improving the Learning Performance

  • Kim, Minguk;Kim, Tae Wan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.5
    • /
    • pp.73-82
    • /
    • 2023
  • Optimization of Construction Site Layout Planning (CSLP) heavily relies on workers' travel paths. However, traditional path generation approaches predominantly focus on the shortest path, often neglecting critical variables such as individual wayfinding tendencies, the spatial arrangement of site objects, and potential hazards. These oversights can lead to compromised path simulations, resulting in less reliable site layout plans. While Deep Reinforcement Learning (DRL) has been proposed as a potential alternative to address these issues, it has shown limitations. Despite presenting more realistic travel paths by considering these variables, DRL often struggles with efficiency in complex environments, leading to extended learning times and potential failures. To overcome these challenges, this study introduces a refined model that enhances spatial navigation capabilities and learning performance by integrating workers' visibility into the reward functions. The proposed model demonstrated a 12.47% increase in the pathfinding success rate and notable improvements in the other two performance measures compared to the existing DRL framework. The adoption of this model could greatly enhance the reliability of the results, ultimately improving site operational efficiency and safety management such as by reducing site congestion and accidents. Future research could expand this study by simulating travel paths in dynamic, multi-agent environments that represent different stages of construction.