• Title/Summary/Keyword: Learning Navigation

Search Result 358, Processing Time 0.026 seconds

Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications

  • Yang, Haesang;Byun, Sung-Hoon;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.277-284
    • /
    • 2020
  • Underwater acoustics, which is the study of phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. The main objective of underwater acoustic remote sensing is to obtain information on a target object indirectly by using acoustic data. Presently, various types of machine learning techniques are being widely used to extract information from acoustic data. The machine learning techniques typically used in underwater acoustics and their applications in passive SONAR systems were reviewed in the first two parts of this work (Yang et al., 2020a; Yang et al., 2020b). As a follow-up, this paper reviews machine learning applications in SONAR signal processing with a focus on active target detection and classification.

Underwater Acoustic Research Trends with Machine Learning: Ocean Parameter Inversion Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.371-376
    • /
    • 2020
  • Underwater acoustics, which is the study of the phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. Underwater acoustics is mainly applied in the field of remote sensing, wherein information on a target object is acquired indirectly from acoustic data. Presently, machine learning, which has recently been applied successfully in a variety of research fields, is being utilized extensively in remote sensing to obtain and extract information. In the earlier parts of this work, we examined the research trends involving the machine learning techniques and theories that are mainly used in underwater acoustics, as well as their applications in active/passive SONAR systems (Yang et al., 2020a; Yang et al., 2020b; Yang et al., 2020c). As a follow-up, this paper reviews machine learning applications for the inversion of ocean parameters such as sound speed profiles and sediment geoacoustic parameters.

Research on High-resolution Seafloor Topography Generation using Feature Extraction Algorithm Based on Deep Learning (딥러닝 기반의 특징점 추출 알고리즘을 활용한 고해상도 해저지형 생성기법 연구)

  • Hyun Seung Kim;Jae Deok Jang;Chul Hyun;Sung Kyun Lee
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.spc1
    • /
    • pp.90-96
    • /
    • 2024
  • In this paper, we propose a technique to model high resolution seafloor topography with 1m intervals using actual water depth data near the east coast of the Korea with 1.6km distance intervals. Using a feature point extraction algorithm that harris corner based on deep learning, the location of the center of seafloor mountain was calculated and the surrounding topology was modeled. The modeled high-resolution seafloor topography based on deep learning was verified within 1.1m mean error between the actual warder dept data. And average error that result of calculating based on deep learning was reduced by 54.4% compared to the case that deep learning was not applied. The proposed algorithm is expected to generate high resolution underwater topology for the entire Korean peninsula and be used to establish a path plan for autonomous navigation of underwater vehicle.

A Study on the User-Based Small Fishing Boat Collision Alarm Classification Model Using Semi-supervised Learning (준지도 학습을 활용한 사용자 기반 소형 어선 충돌 경보 분류모델에대한 연구)

  • Ho-June Seok;Seung Sim;Jeong-Hun Woo;Jun-Rae Cho;Jaeyong Jung;DeukJae Cho;Jong-Hwa Baek
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.358-366
    • /
    • 2023
  • This study aimed to provide a solution for improving ship collision alert of the 'accident vulnerable ship monitoring service' among the 'intelligent marine traffic information system' services of the Ministry of Oceans and Fisheries. The current ship collision alert uses a supervised learning (SL) model with survey labels based on large ship-oriented data and its operators. Consequently, the small ship data and the operator's opinion are not reflected in the current collision-supervised learning model, and the effect is insufficient because the alarm is provided from a longer distance than the small ship operator feels. In addition, the supervised learning (SL) method requires a large number of labeled data, and the labeling process requires a lot of resources and time. To overcome these limitations, in this paper, the classification model of collision alerts for small ships using unlabeled data with the semi-supervised learning (SSL) algorithms (Label Propagation and TabNet) was studied. Results of real-time experiments on small ship operators using the classification model of collision alerts showed that the satisfaction of operators increased.

A Study on Area Detection Using Transfer-Learning Technique (Transfer-Learning 기법을 이용한 영역검출 기법에 관한 연구)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.178-179
    • /
    • 2018
  • Recently, methods of using machine learning in artificial intelligence such as autonomous navigation and speech recognition have been actively studied. Classical image processing methods such as classical boundary detection and pattern recognition have many limitations in order to recognize a specific object or area in a digital image. However, when a machine learning method such as deep-learning is used, Can be obtained. However, basically, a large amount of learning data must be secured for machine learning such as deep-learning. Therefore, it is difficult to apply the machine learning for area classification when the amount of data is very small, such as aerial photographs for environmental analysis. In this study, we apply a transfer-learning technique that can be used when the dataset size of the input image is small and the shape of the input image is not included in the category of the training dataset.

  • PDF

Forecasting of Passenger Numbers, Freight Volumes and Optimal Tonnage of Passenger Ship in Mokpo Port (목포항 여객수 및 적정 선복량 추정에 관한 연구)

  • Jang, Woon-Jae;Keum, Jong-Soo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.509-515
    • /
    • 2004
  • The aim of this paper is to forecast passenger numbers and freight volumes in 2005 and it is proposed optimal tonnage of passenger ship. The forecasting of passenger numbers and freight volumes is important problem in order to determine optimal tonnage of passenger ship, port plan and development. In this paper, the forecasting of passenger numbers and freight volumes are performed by the method of neural network using back-propagation learning algorithm. And this paper compares the forecasting performance of neural networks with moving average method and exponential smooth method As the result of analysis. The forecasting of passenger numbers and freight volumes is that the neural networks performed better than moving average method and exponential smoothing method on the basis of MSE(mean square error) and MAE(mean absolute error).

Composing Recommended Route through Machine Learning of Navigational Data (항적 데이터 학습을 통한 추천 항로 구성에 관한 연구)

  • Kim, Joo-Sung;Jeong, Jung Sik;Lee, Seong-Yong;Lee, Eun-seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.285-286
    • /
    • 2016
  • We aim to propose the prediction modeling method of ship's position with extracting ship's trajectory model through pattern recognition based on the data that are being collected in VTS centers at real time. Support Vector Machine algorithm was used for data modeling. The optimal parameters are calculated with k-fold cross validation and grid search. We expect that the proposed modeling method could support VTS operators' decision making in case of complex encountering traffic situations.

  • PDF

A Study on Project Management Learning Community using Application (앱을 이용한 프로젝트관리 학습 커뮤니티에 관한 연구)

  • Cho, Do-Eun;Kim, Si-Jung
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1126-1131
    • /
    • 2011
  • As the recent paradigm of education changes to become learner-centered, there is an increasing interest in project based class as one of new teaching models. Universities are accepting this change and aiming at fostering human resources of next generations, who are able to create creative changes, and studies are being actively conducted to that end. This study suggested a learner-centered teaching model which minimizes intervention of teachers in conducting projects of main text contents in designed subjects. This study suggested support system for the suggested model project-based class, team organization method, various interaction methods of learners, and team work monitoring method of teachers. And the suggestions were designed and realized through project management applications using smart phones which are being used by a rapidly growing number of people recently.

A Positioning DB Generation Algorithm Applying Generative Adversarial Learning Method of Wireless Communication Signals

  • Ji, Myungin;Jeon, Juil;Cho, Youngsu
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.151-156
    • /
    • 2020
  • A technology for calculating the position of a device is very important for users who receive positioning services, regardless of various indoor/outdoor or with/without any positioning infrastructure existence environments. One of the positioning resources widely used at present, LTE, is a typical infrastructure that can overcome the space limitation, however its positioning method based on the position of the LTE base station has low accuracy. A method of constructing a radio wave map of an LTE signal has been proposed as a method for overcoming the accuracy, but it takes a lot of time and cost to perform high-density collection in a wide area. In this paper, we describe a method of creating a high-density DB for the entire region by using vehicle-based partial collection data. To create a positioning database, we applied the idea of Generative Adversarial Network (GAN), which has recently been in the spotlight in the field of deep learning, and learned the collected data. Then, a virtually generated map which having the smallest error from the actual data is selected as the optimum DB. We verified the effectiveness of the positioning DB generation algorithm using the positioning data obtained from un-collected area.

Stabilization Position Control of a Ball-Beam System Using Neural Networks Controller (신경회로망 제어기을 이용한 볼-빔 시스템의 안정화 위치제어)

  • 탁한호;추연규
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.3
    • /
    • pp.35-44
    • /
    • 1999
  • This research aims to seek active control of ball-beam position stability by resorting to neural networks whose layers are given bias weights. The controller consists of an LQR (linear quadratic regulator) controller and a neural networks controller in parallel. The latter is used to improve the responses of the established LQR control system, especially when controlling the system with nonlinear factors or modelling errors. For the learning of this control system, the feedback-error learning algorithm is utilized here. While the neural networks controller learns repetitive trajectories on line, feedback errors are back-propagated through neural networks. Convergence is made when the neural networks controller reversely learns and controls the plant. The goals of teaming are to expand the working range of the adaptive control system and to bridge errors owing to nonlinearity by adjusting parameters against the external disturbances and change of the nonlinear plant. The motion equation of the ball-beam system is derived from Newton's law. As the system is strongly nonlinear, lots of researchers have depended on classical systems to control it. Its applications of position control are seen in planes, ships, automobiles and so on. However, the research based on artificial control is quite recent. The current paper compares and analyzes simulation results by way of the LQR controller and the neural network controller in order to prove the efficiency of the neural networks control algorithm against any nonlinear system.

  • PDF