• Title/Summary/Keyword: Learning Modalities

Search Result 45, Processing Time 0.027 seconds

An EEG-fNIRS Hybridization Technique in the Multi-class Classification of Alzheimer's Disease Facilitated by Machine Learning (기계학습 기반 알츠하이머성 치매의 다중 분류에서 EEG-fNIRS 혼성화 기법)

  • Ho, Thi Kieu Khanh;Kim, Inki;Jeon, Younghoon;Song, Jong-In;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.305-307
    • /
    • 2021
  • Alzheimer's Disease (AD) is a cognitive disorder characterized by memory impairment that can be assessed at early stages based on administering clinical tests. However, the AD pathophysiological mechanism is still poorly understood due to the difficulty of distinguishing different levels of AD severity, even using a variety of brain modalities. Therefore, in this study, we present a hybrid EEG-fNIRS modalities to compensate for each other's weaknesses with the help of Machine Learning (ML) techniques for classifying four subject groups, including healthy controls (HC) and three distinguishable groups of AD levels. A concurrent EEF-fNIRS setup was used to record the data from 41 subjects during Oddball and 1-back tasks. We employed both a traditional neural network (NN) and a CNN-LSTM hybrid model for fNIRS and EEG, respectively. The final prediction was then obtained by using majority voting of those models. Classification results indicated that the hybrid EEG-fNIRS feature set achieved a higher accuracy (71.4%) by combining their complementary properties, compared to using EEG (67.9%) or fNIRS alone (68.9%). These findings demonstrate the potential of an EEG-fNIRS hybridization technique coupled with ML-based approaches for further AD studies.

  • PDF

A Study on the Types of Future Teaching-Learning and Space (미래 교수-학습 및 공간의 유형에 관한 연구)

  • Cho, Jin-Il;Choi, Hyeong-Ju;Hong, Sun-Joo;Ahn, Tae-Youn
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.19 no.1
    • /
    • pp.13-24
    • /
    • 2020
  • The purpose of this study is to analyze and match future teaching-learning methods with learning-space types as customized not only by school grade or grade groups, but also by learning modality. As a result, the following six teaching-learning methods were identified as future teaching-learning methods: flipped learning, deeper learning, collaborative learning, learning through immersive virtual reality, playful learning, and learning through OER(Open Educational Resources). There were also six learning-space types that were identified: playing and discovering space, a making and placement space, a presentation and sharing space, a space for independent study, space as a stage, and space as content(See Tables 8 and 11). Learning-space types and future teaching-learning methods were matched with 22 different types of learning modalities based on the presented degree of utilization by school grade or grade groups(See Table 13).

FakedBits- Detecting Fake Information on Social Platforms using Multi-Modal Features

  • Dilip Kumar, Sharma;Bhuvanesh, Singh;Saurabh, Agarwal;Hyunsung, Kim;Raj, Sharma
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.51-73
    • /
    • 2023
  • Social media play a significant role in communicating information across the globe, connecting with loved ones, getting the news, communicating ideas, etc. However, a group of people uses social media to spread fake information, which has a bad impact on society. Therefore, minimizing fake news and its detection are the two primary challenges that need to be addressed. This paper presents a multi-modal deep learning technique to address the above challenges. The proposed modal can use and process visual and textual features. Therefore, it has the ability to detect fake information from visual and textual data. We used EfficientNetB0 and a sentence transformer, respectively, for detecting counterfeit images and for textural learning. Feature embedding is performed at individual channels, whilst fusion is done at the last classification layer. The late fusion is applied intentionally to mitigate the noisy data that are generated by multi-modalities. Extensive experiments are conducted, and performance is evaluated against state-of-the-art methods. Three real-world benchmark datasets, such as MediaEval (Twitter), Weibo, and Fakeddit, are used for experimentation. Result reveals that the proposed modal outperformed the state-of-the-art methods and achieved an accuracy of 86.48%, 82.50%, and 88.80%, respectively, for MediaEval (Twitter), Weibo, and Fakeddit datasets.

3D Cross-Modal Retrieval Using Noisy Center Loss and SimSiam for Small Batch Training

  • Yeon-Seung Choo;Boeun Kim;Hyun-Sik Kim;Yong-Suk Park
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.670-684
    • /
    • 2024
  • 3D Cross-Modal Retrieval (3DCMR) is a task that retrieves 3D objects regardless of modalities, such as images, meshes, and point clouds. One of the most prominent methods used for 3DCMR is the Cross-Modal Center Loss Function (CLF) which applies the conventional center loss strategy for 3D cross-modal search and retrieval. Since CLF is based on center loss, the center features in CLF are also susceptible to subtle changes in hyperparameters and external inferences. For instance, performance degradation is observed when the batch size is too small. Furthermore, the Mean Squared Error (MSE) used in CLF is unable to adapt to changes in batch size and is vulnerable to data variations that occur during actual inference due to the use of simple Euclidean distance between multi-modal features. To address the problems that arise from small batch training, we propose a Noisy Center Loss (NCL) method to estimate the optimal center features. In addition, we apply the simple Siamese representation learning method (SimSiam) during optimal center feature estimation to compare projected features, making the proposed method robust to changes in batch size and variations in data. As a result, the proposed approach demonstrates improved performance in ModelNet40 dataset compared to the conventional methods.

Advanced neuroimaging techniques for evaluating pediatric epilepsy

  • Lee, Yun Jeong
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.3
    • /
    • pp.88-95
    • /
    • 2020
  • Accurate localization of the seizure onset zone is important for better seizure outcomes and preventing deficits following epilepsy surgery. Recent advances in neuroimaging techniques have increased our understanding of the underlying etiology and improved our ability to noninvasively identify the seizure onset zone. Using epilepsy-specific magnetic resonance imaging (MRI) protocols, structural MRI allows better detection of the seizure onset zone, particularly when it is interpreted by experienced neuroradiologists. Ultra-high-field imaging and postprocessing analysis with automated machine learning algorithms can detect subtle structural abnormalities in MRI-negative patients. Tractography derived from diffusion tensor imaging can delineate white matter connections associated with epilepsy or eloquent function, thus, preventing deficits after epilepsy surgery. Arterial spin-labeling perfusion MRI, simultaneous electroencephalography (EEG)-functional MRI (fMRI), and magnetoencephalography (MEG) are noinvasive imaging modalities that can be used to localize the epileptogenic foci and assist in planning epilepsy surgery with positron emission tomography, ictal single-photon emission computed tomography, and intracranial EEG monitoring. MEG and fMRI can localize and lateralize the area of the cortex that is essential for language, motor, and memory function and identify its relationship with planned surgical resection sites to reduce the risk of neurological impairments. These advanced structural and functional imaging modalities can be combined with postprocessing methods to better understand the epileptic network and obtain valuable clinical information for predicting long-term outcomes in pediatric epilepsy.

Acupuncture in Sport Recovery: A Brief Review

  • CHAPLEAU, Christopher
    • The Korean Journal of Food & Health Convergence
    • /
    • v.6 no.2
    • /
    • pp.23-26
    • /
    • 2020
  • Active and therapeutic sport recovery is becoming a popular and important component in approving performance for pro and recreational athletes alike. It is also helping in the realm of injury prevention. In the search of finding modalities that are widely effective, natural, and safe, acupuncture is a viable and cost-effective treatment for helping athletes achieve this goal. More direct related research is needed, but testimonials from pro athletes and the body of research that currently exists provides powerful evidence on acupunctures ability to help with enhancing recovery. Specializing in acupuncture and exercise science, Chris integrates acupuncture into musculoskeletal rehabilitation therapy or fitness training for pain modulation, speedy recovery, and enhanced performance. Clients can choose to focus on one-on-one corrective exercise therapy, manual and massage therapy, or acupuncture. However, for best results, Chris recommends all three. Other modalities that he uses in therapy are acu-taping, herbal therapy, nutrition supplementation, cupping, guasha, and stretching techniques. The corrective exercise component is one-on-one body balancing management, focusing on strength and conditioning, post physical rehab - exercise therapy, integrative sport specific exercise, weight loss, core strengthening, dynamic lumbar stabilization, active recovery techniques, and myo-fascial release techniques. The acupuncture component focuses on sport injuries, myofascial pain, peripheral neuropathy, arthritis, facial rejuvenation, stress, smoking cessation, addiction detoxification program, weight management, sport recovery and performance.

3D Medical Image Data Augmentation for CT Image Segmentation (CT 이미지 세그멘테이션을 위한 3D 의료 영상 데이터 증강 기법)

  • Seonghyeon Ko;Huigyu Yang;Moonseong Kim;Hyunseung Choo
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.85-92
    • /
    • 2023
  • Deep learning applications are increasingly being leveraged for disease detection tasks in medical imaging modalities such as X-ray, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). Most data-centric deep learning challenges necessitate the use of supervised learning methodologies to attain high accuracy and to facilitate performance evaluation through comparison with the ground truth. Supervised learning mandates a substantial amount of image and label sets, however, procuring an adequate volume of medical imaging data for training is a formidable task. Various data augmentation strategies can mitigate the underfitting issue inherent in supervised learning-based models that are trained on limited medical image and label sets. This research investigates the enhancement of a deep learning-based rib fracture segmentation model and the efficacy of data augmentation techniques such as left-right flipping, rotation, and scaling. Augmented dataset with L/R flipping and rotations(30°, 60°) increased model performance, however, dataset with rotation(90°) and ⨯0.5 rescaling decreased model performance. This indicates the usage of appropriate data augmentation methods depending on datasets and tasks.

Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review

  • Nagi, Ravleen;Aravinda, Konidena;Rakesh, N;Gupta, Rajesh;Pal, Ajay;Mann, Amrit Kaur
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.81-92
    • /
    • 2020
  • Intelligent systems(i.e., artificial intelligence), particularly deep learning, are machines able to mimic the cognitive functions of humans to perform tasks of problem-solving and learning. This field deals with computational models that can think and act intelligently, like the human brain, and construct algorithms that can learn from data to make predictions. Artificial intelligence is becoming important in radiology due to its ability to detect abnormalities in radiographic images that are unnoticed by the naked human eye. These systems have reduced radiologists' workload by rapidly recording and presenting data, and thereby monitoring the treatment response with a reduced risk of cognitive bias. Intelligent systems have an important role to play and could be used by dentists as an adjunct to other imaging modalities in making appropriate diagnoses and treatment plans. In the field of maxillofacial radiology, these systems have shown promise for the interpretation of complex images, accurate localization of landmarks, characterization of bone architecture, estimation of oral cancer risk, and the assessment of metastatic lymph nodes, periapical pathologies, and maxillary sinus pathologies. This review discusses the clinical applications and scope of intelligent systems such as machine learning, artificial intelligence, and deep learning programs in maxillofacial imaging.

Medical Ethics Education: Its Objectives and Curriculum (의료윤리교육의 목적 및 과정에 대한 고찰)

  • Lee, Ilhak
    • Korean Medical Education Review
    • /
    • v.16 no.3
    • /
    • pp.147-155
    • /
    • 2014
  • Medical ethics has been integrated into the curriculum for medical education in Korea for over 30 years now. There have been many attempts to establish standards for the educational objectives and curriculum, including establishing learning outcomes and publishing medical ethics textbooks in Korean. However, this task is not easy for several reasons: the interdisciplinary nature of the subject, educators' lack of experience, and the lack of a consensus on the criteria that would be effective educational goals. In this article, the author explores (1) the need for reflection on the education itself, (2) two perspectives of medical ethics education, (3) critical perspectives on the effectiveness of the current medical ethics education, and (4) the variety of modalities of medical ethics education. Further, the author proposes a way to teach medical ethics in Korea. The contents and means are closely related to the question of philosophy of medical education: "Should professional ethics education be 'realistic' or 'idealistic'?" Ethics requires educators to be open to new learning experiences and to ethical development. Medical Ethics education should be relevant to everyday clinical experiences and, at the same time provide students and educators to critically review their ethical perspective through reflections.

A review of Explainable AI Techniques in Medical Imaging (의료영상 분야를 위한 설명가능한 인공지능 기술 리뷰)

  • Lee, DongEon;Park, ChunSu;Kang, Jeong-Woon;Kim, MinWoo
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.259-270
    • /
    • 2022
  • Artificial intelligence (AI) has been studied in various fields of medical imaging. Currently, top-notch deep learning (DL) techniques have led to high diagnostic accuracy and fast computation. However, they are rarely used in real clinical practices because of a lack of reliability concerning their results. Most DL models can achieve high performance by extracting features from large volumes of data. However, increasing model complexity and nonlinearity turn such models into black boxes that are seldom accessible, interpretable, and transparent. As a result, scientific interest in the field of explainable artificial intelligence (XAI) is gradually emerging. This study aims to review diverse XAI approaches currently exploited in medical imaging. We identify the concepts of the methods, introduce studies applying them to imaging modalities such as computational tomography (CT), magnetic resonance imaging (MRI), and endoscopy, and lastly discuss limitations and challenges faced by XAI for future studies.