• Title/Summary/Keyword: Learning Media

Search Result 1,614, Processing Time 0.045 seconds

Suggestion of Digital Technology Application for the Acupoints Education in Korean Medicine (한의학에서 경혈학 교육의 디지털 기술 적용에 대한 제안)

  • Kim, Sang Cheol;Kim, Jae Souk
    • Smart Media Journal
    • /
    • v.11 no.8
    • /
    • pp.55-64
    • /
    • 2022
  • In the recent education market, Edutech technology, in which various digital technologies are grafted into the education, is being actively applied due to the 4th industrial revolution and the development of ICT. In particular, realistic experiential learning contents that can provide realistic and immersive learning in a virtual space are in the spotlight and are being expanded to each field. However, in the field of Korean medicine education, the introduction of ICT is delayed due to the nature of Korean medicine, difficulties in apprenticeship education, quantitative education, and the absence of an objective evaluation system. Therefore, in this study, we propose a digital technology application for acupuncture and acupuncture points, where practice is particularly important in Korean medicine. Various methods of acupuncture and acupoints education using AR, MR, IoT and Touch-Display Table will provide an opportunity to change the paradigm of Korean medicine education and further contribute to the globalization of Korean medicine.

Humming: Image Based Automatic Music Composition Using DeepJ Architecture (허밍: DeepJ 구조를 이용한 이미지 기반 자동 작곡 기법 연구)

  • Kim, Taehun;Jung, Keechul;Lee, Insung
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.748-756
    • /
    • 2022
  • Thanks to the competition of AlphaGo and Sedol Lee, machine learning has received world-wide attention and huge investments. The performance improvement of computing devices greatly contributed to big data processing and the development of neural networks. Artificial intelligence not only imitates human beings in many fields, but also seems to be better than human capabilities. Although humans' creation is still considered to be better and higher, several artificial intelligences continue to challenge human creativity. The quality of some creative outcomes by AI is as good as the real ones produced by human beings. Sometimes they are not distinguishable, because the neural network has the competence to learn the common features contained in big data and copy them. In order to confirm whether artificial intelligence can express the inherent characteristics of different arts, this paper proposes a new neural network model called Humming. It is an experimental model that combines vgg16, which extracts image features, and DeepJ's architecture, which excels in creating various genres of music. A dataset produced by our experiment shows meaningful and valid results. Different results, however, are produced when the amount of data is increased. The neural network produced a similar pattern of music even though it was a different classification of images, which was not what we were aiming for. However, these new attempts may have explicit significance as a starting point for feature transfer that will be further studied.

The Importance of Multimedia for Professional Training of Future Specialists

  • Plakhotnik, Oleh;Strazhnikova, Inna;Yehorova, Inha;Semchuk, Svitlana;Tymchenko, Alla;Logvinova, Yaroslava;Kuchai, Oleksandr
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.43-50
    • /
    • 2022
  • For high-quality education of the modern generation of students, forms of organizing the educational process and the latest methods of obtaining knowledge that differ from traditional ones are necessary. The importance of multimedia teaching tools is shown, which are promising and highly effective tools that allow the teacher not only to present an array of information in a larger volume than traditional sources of information, but also to include text, graphs, diagrams, sound, animation, video, etc. in a visually integrated form. Approaches to the classification of multimedia learning tools are revealed. Special features, advantages of multimedia, expediency of use and their disadvantages are highlighted. A comprehensive analysis of the capabilities of multimedia teaching tools gave grounds for identifying the didactic functions that they perform. Several areas of multimedia application are described. Multimedia technologies make it possible to implement several basic methods of pedagogical activity, which are traditionally divided into active and passive principles of student interaction with the computer, which are revealed in the article. Important conditions for the implementation of multimedia technologies in the educational process are indicated. The feasibility of using multimedia in education is illustrated by examples. Of particular importance in education are game forms of learning, in the implementation of which educational elements based on media material play an important role. The influence of the game on the development of attention by means of works of media culture, which are very diverse in form and character, is shown. The importance of the role of multimedia in student education is indicated. In the educational process of multimedia students, a number of educational functions are implemented, which are presented in the article. Recommendations for using multimedia are given.

A Study on Research Trends in Literacy Education through a Key word Network Analysis (키워드 네트워크 분석을 통한 리터러시 교육 연구 동향)

  • Lee, Woo-Jin;Baek, Hye-Jin
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.53-59
    • /
    • 2022
  • The purpose of this study is to examine the factors related to learning through analysis of domestic research trends in literacy and to present the direction of literacy education. Research papers from 1993 to February 2022 were collected using RISS. 'Literacy' and 'Education' were used as search keywords, and 200 papers were selected for analysis. As a result of analysis using keyword network analysis, 118 keywords appeared at least three times out of a total of 810 keywords. The order of the keywords with the highest frequency is 'digital literacy', 'media literacy', and 'elementary school'. The following direction was suggested through the analysis results. First, it is required to establish an online teaching and learning resource platform and link it with education policy. Second, it is necessary to set literacy competencies and seek ways to improve competencies. Third, a digital-based convergence education model should be developed. This study is meaningful in that it analyzed the most recent literacy studies and suggested the direction of literacy education.

Performance Analysis of Optical Camera Communication with Applied Convolutional Neural Network (합성곱 신경망을 적용한 Optical Camera Communication 시스템 성능 분석)

  • Jong-In Kim;Hyun-Sun Park;Jung-Hyun Kim
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.49-59
    • /
    • 2023
  • Optical Camera Communication (OCC), known as the next-generation wireless communication technology, is currently under extensive research. The performance of OCC technology is affected by the communication environment, and various strategies are being studied to improve it. Among them, the most prominent method is applying convolutional neural networks (CNN) to the receiver of OCC using deep learning technology. However, in most studies, CNN is simply used to detect the transmitter. In this paper, we experiment with applying the convolutional neural network not only for transmitter detection but also for the Rx demodulation system. We hypothesize that, since the data images of the OCC system are relatively simple to classify compared to other image datasets, high accuracy results will appear in most CNN models. To prove this hypothesis, we designed and implemented an OCC system to collect data and applied it to 12 different CNN models for experimentation. The experimental results showed that not only high-performance CNN models with many parameters but also lightweight CNN models achieved an accuracy of over 99%. Through this, we confirmed the feasibility of applying the OCC system in real-time on mobile devices such as smartphones.

AI-based smart water environment management service platform development (AI기반 스마트 수질환경관리 서비스 플랫폼 개발)

  • Kim, NamHo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.56-63
    • /
    • 2022
  • Recently, the frequency and range of algae occurrence in major rivers and lakes are increasing due to the increase in water temperature due to climate change, the inflow of excessive nutrients, and changes in the river environment. Abnormal algae include green algae and red algae. Green algae is a phenomenon in which blue-green algae such as chlorophyll (Chl-a) in the water grow excessively and the color of the water changes to dark green. In this study, a 3D virtual world of digital twin was built to monitor and control water quality information measured in ecological rivers and lakes in the living environment in real time from a remote location, and a sensor measuring device for water quality information based on the Internet of Things (IOT) sensor. We propose to build a smart water environment service platform that can provide algae warning and water quality forecasting by predicting the causes and spread patterns of water pollution such as algae based on AI machine learning-based collected data analysis.

Apple detection dataset with visibility and deep learning detection using adaptive heatmap regression (가시성을 표시한 사과 검출 데이터셋과 적응형 히트맵 회귀를 이용한 딥러닝 검출)

  • Tae-Woong Yoo;Dasom Seo;Minwoo Kim;Seul Ki Lee;Il-Seok, Oh
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.19-28
    • /
    • 2023
  • In the fruit harvesting field, interest in automatic robot harvesting is increasing due to various seasonality and rising harvesting costs. Accurate apple detection is a difficult problem in complex orchard environments with changes in light, vibrations caused by wind, and occlusion of leaves and branches. In this paper, we introduce a dataset and an adaptive heatmap regression model that are advantageous for robot automatic apple harvesting. The apple dataset was labeled with not only the apple location but also the visibility. We propose a method to detect the center point of an apple using an adaptive heatmap regression model that adjusts the Gaussian shape according to visibility. The experimental results showed that the performance of the proposed method was applicable to apple harvesting robots, with MAP@K of 0.9809 and 0.9801 when K=5 and K=10, respectively.

Predictive Models for the Tourism and Accommodation Industry in the Era of Smart Tourism: Focusing on the COVID-19 Pandemic (스마트관광 시대의 관광숙박업 영업 예측 모형: 코로나19 팬더믹을 중심으로)

  • Yu Jin Jo;Cha Mi Kim;Seung Yeon Son;Mi Jin Noh
    • Smart Media Journal
    • /
    • v.12 no.8
    • /
    • pp.18-25
    • /
    • 2023
  • The COVID-19 outbreak in 2020 caused continuous damage worldwode, especially the smart tourism industry was hit directly by the blockade of sky roads and restriction of going out. At a time when overseas travel and domestic travel have decreased significantly, the number of tourist hotels that are colsed and closed due to the continued deficit is increasing. Therefore, in this study, licensing data from the Ministry of Public Administraion and Security were collected and visualized to understand the operation status of the tourism and lodging industry. The machine learning classification algorithm was applied to implement the business status prediction model of the tourist hotel, the performance of the prediction model was optimized using the ensemble algorithm, and the performance of the model was evaluated through 5-Fold cross-validation. It was predicted that the survival rate of tourist hotels would decrease somewhat, but the actual survival rate was analyzed to be no different from before COVID-19. Through the prediction of the business status of the hotel industry in this paper, it can be used as a basis for grasping the operability and development trends of the entire tourism and lodging industry.

Improving prediction performance of network traffic using dense sampling technique (밀집 샘플링 기법을 이용한 네트워크 트래픽 예측 성능 향상)

  • Jin-Seon Lee;Il-Seok Oh
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.24-34
    • /
    • 2024
  • If the future can be predicted from network traffic data, which is a time series, it can achieve effects such as efficient resource allocation, prevention of malicious attacks, and energy saving. Many models based on statistical and deep learning techniques have been proposed, and most of these studies have focused on improving model structures and learning algorithms. Another approach to improving the prediction performance of the model is to obtain a good-quality data. With the aim of obtaining a good-quality data, this paper applies a dense sampling technique that augments time series data to the application of network traffic prediction and analyzes the performance improvement. As a dataset, UNSW-NB15, which is widely used for network traffic analysis, is used. Performance is analyzed using RMSE, MAE, and MAPE. To increase the objectivity of performance measurement, experiment is performed independently 10 times and the performance of existing sparse sampling and dense sampling is compared as a box plot. As a result of comparing the performance by changing the window size and the horizon factor, dense sampling consistently showed a better performance.

Graph Neural Network and Reinforcement Learning based Optimal VNE Method in 5G and B5G Networks (5G 및 B5G 네트워크에서 그래프 신경망 및 강화학습 기반 최적의 VNE 기법)

  • Seok-Woo Park;Kang-Hyun Moon;Kyung-Taek Chung;In-Ho Ra
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.113-124
    • /
    • 2023
  • With the advent of 5G and B5G (Beyond 5G) networks, network virtualization technology that can overcome the limitations of existing networks is attracting attention. The purpose of network virtualization is to provide solutions for efficient network resource utilization and various services. Existing heuristic-based VNE (Virtual Network Embedding) techniques have been studied, but the flexibility is limited. Therefore, in this paper, we propose a GNN-based network slicing classification scheme to meet various service requirements and a RL-based VNE scheme for optimal resource allocation. The proposed method performs optimal VNE using an Actor-Critic network. Finally, to evaluate the performance of the proposed technique, we compare it with Node Rank, MCST-VNE, and GCN-VNE techniques. Through performance analysis, it was shown that the GNN and RL-based VNE techniques are better than the existing techniques in terms of acceptance rate and resource efficiency.